精英家教网 > 高中数学 > 题目详情
3.已知三角函数f(x)=$\sqrt{3}$sinx+acosx(a为常数且a>0)的最大值为2,求a的值,并把f(x)表示成Asin(ωx+φ).

分析 由三角函数中的恒等变换应用化简函数解析式可得f(x)=$\sqrt{3+{a}^{2}}$sin(x+φ),其中tanφ=$\frac{a}{\sqrt{3}}$,由已知即可求得a的值,即可把f(x)表示成Asin(ωx+φ).

解答 解:∵f(x)=$\sqrt{3}$sinx+acosx=$\sqrt{3+{a}^{2}}$sin(x+φ),其中tanφ=$\frac{a}{\sqrt{3}}$,
又∵a为常数且a>0,最大值为2,
∴$\sqrt{3+{a}^{2}}$=2,解得:a=1,
∴f(x)=2($\frac{\sqrt{3}}{2}$sinx+$\frac{1}{2}$cosx)=2sin(x+$\frac{π}{6}$).

点评 本题主要考查了三角函数中的恒等变换应用,正弦函数的图象和性质,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.已知过点A(1,m)恰能作曲线f(x)=x3-3x的两条切线,则m的值是-3或-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知a,b为实数,函数f(x)=$\frac{1}{x+a}$+b,函数g(x)=lnx.
(1)当a=b=0时,令F(x)=f(x)+g(x),求函数F(x)的极值;
(2)当a=-1时,令G(x)=f(x)•g(x),是否存在实数b,使得对于函数y=G(x)定义域中的任意实数x1,均存在实数x2∈[1,+∞),有G(x1)-x2=0成立,若存在,求出实数b的取值集合;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在四棱锥P-ABCD中,PA⊥底面ABCD,底面ABCD是正方形,AB=PA=1,E为侧棱PA上的点,$\overrightarrow{PE}$=λ$\overrightarrow{PA}$(0<λ<1).
(Ⅰ)证明:BD⊥CE;
(Ⅱ)当λ=$\frac{1}{3}$时,求两面角A-CE-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.如右图,棱长为1的正方体ABCD-A1B1C1D1中,P为线段A1B上的动点(不含端点),下列结论:
①D1B与平面ABCD所成角为45°
②DC1⊥D1P
③二面角 A-A1P-D1的大小为90°
④AP+PD1的最小值为$\sqrt{2+\sqrt{2}}$
其中正确结论的序号是②③④.(写出所有正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如图,在正方形ABCD中,AB=2,点E为BC的中点,点F在边CD上,若$\overrightarrow{AE}$•$\overrightarrow{BF}$=0,则$\overrightarrow{AE}$•$\overrightarrow{AF}$=4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.复数z1=1+2i,z2=-2+i,z3=-$\sqrt{3}$-$\sqrt{2}$i,z4=$\sqrt{3}$-$\sqrt{2}$i,z1,z2,z3,z4在复平面内的对应点分别是A,B,C,D,则∠ABC+∠ADC=225°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.三棱锥P-ABC中,平面PAB⊥平面ABC,PA=PB=AB=$\frac{1}{2}$AC,∠BCA=30°.
(1)求证:BC⊥平面PAB;
(2)求二面角C-PA-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.如图,正方体ABCD-EFGH的棱长为3,则点D到平面ACH的距离为$\sqrt{3}$.

查看答案和解析>>

同步练习册答案