精英家教网 > 高中数学 > 题目详情
15.在(x+$\frac{1}{x}$-2)20的展开式中含x-17项的系数是-9880(用数字作答)

分析 (x+$\frac{1}{x}$-2)20=($\sqrt{x}$-$\frac{1}{\sqrt{x}}$)40,通项为Tr+1=${C}_{40}^{r}•(-1)^{r}•{x}^{20-r}$.令20-r=-17,可得r=37,即可得出结论.

解答 解:(x+$\frac{1}{x}$-2)20=($\sqrt{x}$-$\frac{1}{\sqrt{x}}$)40,通项为Tr+1=${C}_{40}^{r}•(-1)^{r}•{x}^{20-r}$.
令20-r=-17,可得r=37,
∴(x+$\frac{1}{x}$-2)20的展开式中含x-17项的系数是-${C}_{40}^{37}$=-9880.
故答案为:-9880.

点评 本题考查二项展开式的通项的简单直接应用.牢记公式是基础,计算准确是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.写出与-$\frac{π}{3}$终边相同的角的集合A,并把A中在-3π~3π之间的角写出来.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.有十个好学生的指标分给班级的六个学习小组,每组名额不限,有多少种分法.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.如图所示,在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,点E在线段PC上,PC⊥平面BDE.
(Ⅰ)证明:BD⊥平面PAC;
(Ⅱ)若PA=1,AD=2,求二面角B-PC-A的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\frac{1}{3}$ax3-$\frac{1}{4}$x2+cx+d(a、c、d∈R)满足f(0)=0,f′(1)=0.
(1)求d的值及c关于a的表达式;
(2)若f′(x)≥0在R上恒成立,求a的值;
(3)在(2)的条件下,若h(x)=$\frac{3}{4}$x2-bx+$\frac{b}{2}$-$\frac{1}{4}$,且b>$\frac{1}{2}$,求不等式f′(x)+h(x)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,AB,CD为圆O的两条直径,P为圆O所在平面外的一点,且PA=PB=PC
(1)求证:平面PAB⊥圆O所在平面,
(2)若圆O的半径为2,PA=4,求以圆O为底面,P为顶点的几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,直三棱柱ABC-A1B1C1中,点D在棱AA1上,且∠ACB=90°,AA1=BC=2,AC=1.
(1)若D为AA1的中点,试求三棱锥C1-A1B1D的体积;
(2)若二面角B1-DC-C1的大小为60°,求AD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知命题p:?x∈R,x+|x-a|>3恒成立,命题q:函数f(x)=lg[-x2+(a-2)x+2a]在区间(1,2)上单调递减.
(1)若p∨(¬q)是假命题,求实数a的取值集合A;
(2)设函数g(x)=4x-m•2x+25,在(1)的前提下,当x∈A时,关于x的方程g(x)=0只有一个实根,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的离心率为$\frac{{\sqrt{2}}}{2}$,B、F分别为其短轴的一个端点和左焦点,且|BF|=$\sqrt{2}$.
(1)求椭圆C的方程;
(2)设椭圆C的左、右顶点为A1,A2,过定点N(2,0)的直线与椭圆C交于不同的两点D1,D2,直线A1D1,A2D2交于点K,证明点K在一条定直线上.

查看答案和解析>>

同步练习册答案