精英家教网 > 高中数学 > 题目详情
20.已知Sn为数列{an}的前n项和,Sn=nan-3n(n-1),a2=11,求Sn

分析 由已知结合数列递推式求得首项,在数列递推式中取n=n-1得另一递推式,作出后得到数列为等差数列,由等差数列的前n项和得答案.

解答 解:由Sn=nan-3n(n-1)①,
得S2=a1+a2=2a2-3×2×1,
即a1=a2-6=11-6=5,
当n≥2时,Sn-1=(n-1)an-1-3(n-1)(n-2)②,
①-②得:(n-1)an-(n-1)an-1-6(n-1)=0,
∵n≥2,∴an-an-1=6,
即数列{an}是以5为首项,以6为公差的等差数列,
则${S}_{n}=n{a}_{1}+\frac{n(n-1)d}{2}$=$5n+\frac{6n(n-1)}{2}=3{n}^{2}+2n$.

点评 本题考查了数列递推式,考查了等差关系的确定,考查了等差数列的前n项和,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=$\left\{{\begin{array}{l}{{x^2}+2x,x≤0}\\{f(x-1)+1,x>0}\end{array}}$,当x∈[0,100]时,关于x的方程f(x)=x-$\frac{1}{5}$的所有解的和为10000.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在数列{an}中,an+1=$\frac{2{a}_{n}}{2+{a}_{n}}$对所有正整数n都成立,且a1=2,则an=$\frac{2}{n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设a、b、c∈R*,求证:
(1)(a+b+c)($\frac{1}{a}$+$\frac{1}{b}$+$\frac{1}{c}$)≥9;
(2)(a+b+c)($\frac{1}{a+b}$+$\frac{1}{b+c}$+$\frac{1}{a+c}$)≥$\frac{9}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)满足2f(x)-f($\frac{1}{x}$)=$\frac{3}{{x}^{2}}$,则f(x)的值域为(  )
A.[2,+∞)B.[2$\sqrt{2}$,+∞)C.[3,+∞)D.[4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求函数y=$\frac{-2{m}^{2}-3m+2}{{m}^{2}+1}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设变量x,y满足约束条件$\left\{\begin{array}{l}{x-y-2≤0}\\{3x+y-6≥0}\\{y≤3}\end{array}\right.$,则z=-2x+y的最小值为(  )
A.-7B.-6C.-1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在等比数列{an}中,a3-2a2=2,且5a4是12a3和2a5的等差中项,则{an}的公比为(  )
A.2B.3C.2或3D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数$f(x)=Asin(ωx+ϕ)(A>0,ω>0,|ϕ|<\frac{π}{2})$的图象的一部分如图所示.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)当$x∈[-6,-\frac{1}{3}]$时,求函数y=f(x)的最大值与最小值及相应的x的值.

查看答案和解析>>

同步练习册答案