精英家教网 > 高中数学 > 题目详情
6.如图所示,在四棱锥P-ABCD中,G为AD的中点,侧面PAD⊥底面ABCD.底面ABCD是边长为a的菱形,且∠D A B=60°,侧面PAD为正三角形.求证:AD⊥平面PGB.

分析 连结PG,证明AD垂直平面PGB内的两条相交直线BG,PG即可.

解答 证明:连结PG,∵在菱形ABCD中,∠DAB=60°,G为AD的中点,得BG⊥AD.
∵△PAD为正三角形,G为AD的中点,得PG⊥AD.
又∵PG∩BG=G,PG?平面PGB,BG?平面PGB,
∴AD⊥平面PGB.

点评 本题考查了线面垂直的判定,关键是判定线线垂直,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.某校为了解本校高三学生学习的心理状态,采用系统抽样方法从1200人中抽取40人参加某种测试,为此将他们随机编号为1,2,…,1200,分组后在第一组采用简单随机抽样的方法抽到的号码为28,抽到的40人中,编号落在区间[1,300]的人做试卷A,编号落在[301,760]的人做试卷B,其余的人做试卷C,则做试卷C的人数为15.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.某学校数学兴趣班共有14人,分为两个小组,在一次阶段考试中两个小组成绩的茎叶图如图所示,其中甲组学生成绩的平均数是88,乙组学生成绩的中位数是89,则m+n的值是12.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的一条渐近线为$y=-\sqrt{2}x$,且一个焦点是抛物线y2=12x的焦点,则该双曲线的方程为(  )
A.$\frac{y^2}{3}-\frac{x^2}{6}=1$B.$\frac{x^2}{3}-\frac{y^2}{6}=1$C.$\frac{x^2}{6}-\frac{y^2}{3}=1$D.$\frac{y^2}{6}-\frac{x^2}{3}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.判断圆x2+y2-2x-3=0和x2+y2-4y+3=0的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.方程x2+y2-2x-4y+6=0表示的轨迹为(  )
A.圆心为(1,2)的圆B.圆心为(2,1)的圆C.圆心为(-1,-2)的圆D.不表示任何图形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.中心在原点,焦点在x轴上,焦距等于12,离心率等于$\frac{3}{5}$,则此椭圆的方程是(  )
A.$\frac{{x}^{2}}{100}$+$\frac{{y}^{2}}{36}$=1B.$\frac{{x}^{2}}{100}$+$\frac{{y}^{2}}{64}$=1C.$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1D.$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列在曲线$\left\{\begin{array}{l}x=cosθ+sinθ\\ y=sin2θ\end{array}$(θ为参数)上的点是(  )
A.$(\frac{1}{2},-\sqrt{2})$B.$(2,\sqrt{3})$C.$(\sqrt{2},1)$D.$(1,\sqrt{3})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在某化学反应的中间阶段,压力保持不变,温度从1°变化到5°,反应结果如下表所示(x代表温度,y代表结果):
x12345
y3571011
(1)求化学反应的结果y对温度x的线性回归方程$\widehaty=\widehatbx+\widehata$;
(2)判断变量x与y之间是正相关还是负相关,并预测当温度达到10°时反应结果为多少?

查看答案和解析>>

同步练习册答案