精英家教网 > 高中数学 > 题目详情
14.△ABC中,a,b,c分别是内角A,B,C的对边,已知A=60°,a=6,现有以下判断:
①若b=$\sqrt{3}$,则B有两解;
②若$\overrightarrow{{A}{B}}•\overrightarrow{{A}C}$=12,则△ABC的面积为6$\sqrt{3}$;
③b+c不可能等于13;
④$({\overrightarrow{{A}{B}}+\overrightarrow{{A}C}})•\overrightarrow{{B}C}$的最大值为24$\sqrt{3}$.
请将所有正确的判断序号填在横线上②③④.

分析 ①若b=$\sqrt{3}$<a=6,A=60°,则B只有一解,为锐角,即可判断出正误;
②若$\overrightarrow{{A}{B}}•\overrightarrow{{A}C}$=12,可得cbcos60°=12,解得bc,可得S△ABC=$\frac{1}{2}bcsin6{0}^{°}$,即可判断出正误;
③利用余弦定理与基本不等式的性质可得62=b2+c2-2bccos60°≥(b+c)2-3×$(\frac{b+c}{2})^{2}$,解出即可判断出正误;
④由正弦定理可得:b=$4\sqrt{3}sinB$,c=$4\sqrt{3}sinC$,代入化简为$({\overrightarrow{{A}{B}}+\overrightarrow{{A}C}})•\overrightarrow{{B}C}$=$(\overrightarrow{AC}+\overrightarrow{AB})$•$(\overrightarrow{AC}-\overrightarrow{AB})$=b2-c2)=$24\sqrt{3}sin(2C+6{0}^{°})$,即可判断出正误.

解答 解:①若b=$\sqrt{3}$<a=6,A=60°,则B只有一解,为锐角,因此不正确;
②∵若$\overrightarrow{{A}{B}}•\overrightarrow{{A}C}$=12,∴cbcos60°=12,解得bc=24,∴S△ABC=$\frac{1}{2}bcsin6{0}^{°}$=6$\sqrt{3}$,正确;
③∵62=b2+c2-2bccos60°≥(b+c)2-3×$(\frac{b+c}{2})^{2}$,解得b+c≤12,当且仅当b=c=6时取等号,∴b+c的最大值为12,因此不可能等于13,正确.
④由正弦定理可得:$\frac{b}{sinB}=\frac{c}{sinC}=\frac{a}{sinA}=4\sqrt{3}$,∴b=$4\sqrt{3}sinB$,c=$4\sqrt{3}sinC$,$({\overrightarrow{{A}{B}}+\overrightarrow{{A}C}})•\overrightarrow{{B}C}$=$(\overrightarrow{AC}+\overrightarrow{AB})$•$(\overrightarrow{AC}-\overrightarrow{AB})$=${\overrightarrow{AC}}^{2}-{\overrightarrow{AB}}^{2}$=b2-c2=48sin2B-48sin2C=24(1-cos2B)-24(1-cos2C)=24cos2C-24cos(240°-2C)=$24\sqrt{3}sin(2C+6{0}^{°})$≤24$\sqrt{3}$,因此正确.
综上可得:只有②③④正确.
故答案为:②③④.

点评 本题考查了正弦定理余弦定理解三角形、基本不等式的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.等比数列{an}满足a2+8a5=0,设数列{$\frac{1}{{a}_{n}}$}的前n项和为Sn,则$\frac{{S}_{5}}{{S}_{2}}$=(  )
A.-11B.-8C.5D.11

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.下列式子描述正确的有①②③.
①sin1°<cos1<sin1<cos1°;        
②$\overrightarrow{a}$•$\overrightarrow{b}$=0?|$\overrightarrow{a}$+$\overrightarrow{b}$|=|$\overrightarrow{a}$-$\overrightarrow{b}$|;
③cos2α=(1+sinα)(1-sinα);      
④($\overrightarrow{a}$•$\overrightarrow{b}$)2=$\overrightarrow{a}$2•$\overrightarrow{b}$2
⑤2sin2x=1+cos2x;            
⑥sin($\frac{π}{6}$-α)≠cos($\frac{π}{3}$+α).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设f,g都是X到Y的映射,其中X={0,1,2,3},Y={0,1,2,3}其对应法则(从上到下)如下表
x0123
y=f(x)3012
x0123
y=g(x)1032
设a=g[f(3)],b=g[g(2)],c=f{g[f(1)]},则a,b,c的大小关系为(  )
A.a>b>cB.a>c>bC.b>c>aD.c>a>b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.4弧度的角是(  )
A.第一象限角B.第二象限角C.第三象限角D.第四象限角

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数f(x)=x2-4x+5-2lnx的零点个数为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=xlnx,g(x)=$\frac{1}{3}$ax2-bx,其中a,b∈R.
(1)若f(x)≥-x2+ax-6在(0,+∞)上恒成立,求实数a的取值范围;
(2)当b=-$\frac{2}{3}$a时,若f(x+1)≤$\frac{3}{2}$g(x)对x∈[0,+∞)恒成立,求a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设a为实数,函数f(x)=2x2+(x-a)|x-a|
(Ⅰ)若a=1,求f(x)单调递增区间;
(Ⅱ)记g(x)=x2-2x-3,若存在x1,x1∈[0,4],使得f(x1)=g(x1),求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若二次函数f(x)=ax2+bx+c(a≠0)的图象与直线y=x无交点,现有下列结论:
①若a=1,b=2,则c>$\frac{1}{4}$
②若a+b+c=0,则不等式f(x)>x对一切实数x都成立
③函数g(x)=ax2-bx+c的图象与直线y=-x也一定没有交点
④若a>0,则不等式f[f(x)]>x对一切实数x都成立
⑤方程f[f(x)]=x一定没有实数根
其中正确的结论是①③④⑤(写出所有正确结论的编号)

查看答案和解析>>

同步练习册答案