精英家教网 > 高中数学 > 题目详情
2.设f,g都是X到Y的映射,其中X={0,1,2,3},Y={0,1,2,3}其对应法则(从上到下)如下表
x0123
y=f(x)3012
x0123
y=g(x)1032
设a=g[f(3)],b=g[g(2)],c=f{g[f(1)]},则a,b,c的大小关系为(  )
A.a>b>cB.a>c>bC.b>c>aD.c>a>b

分析 根据表格先依次求出内层函数值,再求出外层函数值.

解答 解:由表格可得,f(3)=2,g(2)=3,f(1)=3,f(2)=1,
∴a=g[f(3)]=g(2)=3,b=g[g(2)]=g(3)=2,
c=f{g[f(1)]}=f[g(3)]=f(2)=1,
∴a>b>c,
故选:A.

点评 本题考查多层函数值的求法:从内到外依次求取,以及根据表格求函数值,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知i是虚数单位,复数$\frac{a+i}{1+2i}$为纯虚数,则实数a等于(  )
A.2B.-2C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知$\overrightarrow{a}$=(cosx,sinx),$\overrightarrow{b}$=(cosx+$\sqrt{3}$sinx,sinx-$\sqrt{3}$cosx),x∈R,则<$\overrightarrow{a}$,$\overrightarrow{b}$>的值是$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在△ABC中,AB边上的中线CO的长为4,若动点P满足$\overrightarrow{AP}={sin^2}θ•\overrightarrow{AO}+{cos^2}θ•\overrightarrow{AC}$(θ∈R),则$(\overrightarrow{PA}+\overrightarrow{PB})•\overrightarrow{PC}$的最小值是(  )
A.-9B.-8C.4D.16

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知直线(3a+2)x+(1-4a)y+8=0与(5a-2)x+(a+4)y-7=0垂直,则a=0或1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若数列{an},{bn}的通项公式分别是${a_n}={(-1)^{n+2014}}a$,${b_n}=2+\frac{{{{(-1)}^{n+2015}}}}{n}$,且an<bn对任意n∈N*恒成立,则实数a的取值范围是(  )
A.[-1,$\frac{1}{2}$)B.[-2,$\frac{1}{2}$)C.[-2,$\frac{3}{2}$)D.[-1,$\frac{3}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.△ABC中,a,b,c分别是内角A,B,C的对边,已知A=60°,a=6,现有以下判断:
①若b=$\sqrt{3}$,则B有两解;
②若$\overrightarrow{{A}{B}}•\overrightarrow{{A}C}$=12,则△ABC的面积为6$\sqrt{3}$;
③b+c不可能等于13;
④$({\overrightarrow{{A}{B}}+\overrightarrow{{A}C}})•\overrightarrow{{B}C}$的最大值为24$\sqrt{3}$.
请将所有正确的判断序号填在横线上②③④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的一个焦点与抛物线y2=-4x的焦点相同,且椭圆C上一点与椭圆C的左右焦点F1,F2构成三角形的周长为2$\sqrt{2}$+2.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线l:y=kx+m(k,m∈R)与椭圆C交于A,B两点,O为坐标原点,△AOB的重心G满足:$\overrightarrow{{F_1}G}$•$\overrightarrow{{F_2}G}$=-$\frac{5}{9}$,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.直线l:y=kx+1与圆x2+y2=1相交于A,B两点,则“△OAB的面积为$\frac{{\sqrt{3}}}{4}$”是“k=$\sqrt{3}$”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案