精英家教网 > 高中数学 > 题目详情
16.已知x+x-1=4,求:
(1)x${\;}^{\frac{1}{2}}$+x${\;}^{-\frac{1}{2}}$;
(2)x${\;}^{\frac{3}{2}}$+x${\;}^{-\frac{3}{2}}$的值.

分析 (1)利用x+x-1=4=$({x}^{\frac{1}{2}}+{x}^{-\frac{1}{2}})^{2}$-2,x>0.即可得出.
(2)利用“立方和”公式展开即可得出.

解答 解:(1)∵x+x-1=4=$({x}^{\frac{1}{2}}+{x}^{-\frac{1}{2}})^{2}$-2,x>0.
∴x${\;}^{\frac{1}{2}}$+x${\;}^{-\frac{1}{2}}$=$\sqrt{6}$.
(2)x${\;}^{\frac{3}{2}}$+x${\;}^{-\frac{3}{2}}$=$({x}^{\frac{1}{2}}+{x}^{-\frac{1}{2}})$(x-1+x-1)=$\sqrt{6}(4-1)$=3$\sqrt{6}$.

点评 本题考查了指数幂的运算性质、乘法公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.某科研所决定拿出一定数量的资金对科研人员决进行奖励,按照科研成果价值的大小决定奖励前十名,第一名得全部奖金的一半多1万元;第二名得剩余奖金的一半多1万元:第三 名再得剩余奖金的一半多1万元;依此类推,到第十名时,恰得奖金1万元.画出求该科研所总共拿出多少万元作为奖金的流程图.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.求值:$\sqrt{7+2\sqrt{6}}$=$\sqrt{6}$+1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若平面向量$\overrightarrow{a}$与平面向量$\overrightarrow{b}$的夹角等于$\frac{π}{3}$,|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=3,则2$\overrightarrow{a}$-$\overrightarrow{b}$与$\overrightarrow{a}$+2$\overrightarrow{b}$的夹角的余弦值为-$\frac{1}{26}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若$\root{n}{{a}^{n}}$+($\root{n+1}{a}$)n+1=0,a≠0,且n∈N*,则(  )
A.a>0且n为偶数B.a<0且n为偶数C.a>0且n为奇数D.a<0且n为奇数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列命题错误的是(  )
A.若a,b∈R+,则$\sqrt{ab}$≥$\frac{2ab}{a+b}$B.$\frac{b}{a}$+$\frac{a}{b}$≥2成立,当且仅当a,b∈R+
C.若a,b∈R+,则$\frac{1}{{a}^{2}}$+$\frac{1}{{b}^{2}}$≥$\frac{2}{ab}$D.若a,b∈R+,则$\sqrt{\frac{{a}^{2}+{b}^{2}}{2}}$≥$\frac{a+b}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知向量$\overrightarrow{a}$与$\overrightarrow{b}$的坐标,求$\overrightarrow{a}•\overrightarrow{b}$.
(1)$\overrightarrow{a}$=(4,-5),$\overrightarrow{b}$=(-4,3);
(2)$\overrightarrow{a}$=(3,5),$\overrightarrow{b}$=(-5,3);
(3)$\overrightarrow{a}$=(8,5),$\overrightarrow{b}$=(-7,-8);
(4)$\overrightarrow{a}$=(12,-7),$\overrightarrow{b}$=(4,-1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若函数f(x)的定义域是[0,2],则函数g(x)=$\frac{f(x+1)}{x-1}$的定义域是[-1,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知三个函数f(x)=2x+x,g(x)=x-2,h(x)=log2x+x的零点依次为a,b,c,则(  )
A.a<b<cB.a<c<bC.b<a<cD.c<a<b

查看答案和解析>>

同步练习册答案