【题目】日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O),地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A处的水平面是指过点A且与OA垂直的平面.在点A处放置一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬40°,则晷针与点A处的水平面所成角为( )
![]()
A.20°B.40°
C.50°D.90°
科目:高中数学 来源: 题型:
【题目】某地区对当地的某种土特产的销售量y(吨)和销售单价x(元/千克)之间的关系进行了调查,得到下表中的数据:
销售单价x(元/千克) | 11 | 10.5 | 10 | 9.5 | 9 | 8 |
销售量y(吨) | 5 | 6 | 8 | 10 | 11 | 14.1 |
(1)根据前5组数据,求出y关于x的回归直线方程.
(2)若由回归直线方程得到的估计数据与剩下的检验数据的误差不超过0.5,则认为回归直线方程是理想的,试问(1)中得到的回归直线方程是否理想?
(3)如果销售量y(吨)和销售单价x(元/千克)之间仍然服从(1)中的关系,进货成本为2.5元/千克,且货源充足(未售完的部分可按成本价全部售出),为了使利润最大,请你就如何确定销售单价给出合理建议.(每千克销售单价不超过12元)
参考公式:回归直线方程
,其中
.
参考数据:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】祖暅是我国南北朝时期杰出的数学家和天文学家祖冲之的儿子,他提出了一条原理:“幂势既同幂,则积不容异”.这里的“幂”指水平截面的面积,“势”指高.这句话的意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体体积相等.一般大型热电厂的冷却塔大都采用双曲线型.设某双曲线型冷却塔是曲线
与直线
,
和
所围成的平面图形绕
轴旋转一周所得,如图所示.试应用祖暅原理类比求球体体积公式的方法,求出此冷却塔的体积为_______.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=Asin(ωx+φ)(A≠0,ω>0,
<φ<
)的图象关于直线
对称,它的最小正周期为π,则( )
A. f(x)的图象过点(0,
) B. f(x)在
上是减函数
C. f(x)的一个对称中心是
D. f(x)的一个对称中心是![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥PABCD的底面为正方形,PD底面ABCD.设平面PAD与平面PBC的交线为
.
![]()
(1)证明:
平面PDC;
(2)已知PDAD1,Q为
上的点,QB=
,求PB与平面QCD所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在《周髀算经》中,把圆及其内接正方形称为圆方图,把正方形及其内切圆称为方圆图.圆方图和方圆图在我国古代的设计和建筑领域有着广泛的应用.山西应县木塔是我国现存最古老、最高大的纯木结构楼阁式建筑,它的正面图如下图所示.以该木塔底层的边
作正方形,以点
或点
为圆心,以这个正方形的对角线为半径作圆,会发现塔的高度正好跟此对角线长度相等.以该木塔底层的边
作正方形,会发现该正方形与其内切圆的一个切点
正好位于塔身和塔顶的分界线上.经测量发现,木塔底层的边
不少于47.5米,塔顶
到点
的距离不超过19.9米,则该木塔的高度可能是(参考数据:
)( )
![]()
A.66.1米B.67.3米C.68.5米D.69.0米
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,过点P(1,2)的直线l的参数方程为
为参数).以原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为
.
(1)求直线l的普通方程和曲线C的直角坐标方程;
(2)若直线l与曲线C相交于M,N两点,求
的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com