精英家教网 > 高中数学 > 题目详情
11.若函数f(x)=$\left\{{\begin{array}{l}{1-{x^2},x<0}\\{-{x^2}-x-1,x>0}\end{array}}$,则f(f(2))的值为(  )
A.50B.-7C.-48D.-49

分析 先求出f(2)=-7,从而f(f(2))=f(-7),由此能求出结果.

解答 解:∵函数f(x)=$\left\{{\begin{array}{l}{1-{x^2},x<0}\\{-{x^2}-x-1,x>0}\end{array}}$,
∴f(2)=-4-2-1=-7,
f(f(2))=f(-7)=1-(-7)2=-48.
故选:C.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.近年来,某地区为促进本地区发展,通过不断整合地区资源、优化投资环境、提供投资政策扶持等措施,吸引外来投资,效果明显.该地区引进外来资金情况如表:
年份20122013201420152016
时间代号t12345
外来资金y(百亿元)567810
(Ⅰ)求y关于t的回归直线方程$\widehat{y}$=$\widehat{b}$t+$\widehat{a}$;
(Ⅱ)根据所求回归直线方程预测该地区2017年(t=6)引进外来资金情况.
参考公式:回归方程$\widehat{y}$=$\widehat{b}$t+$\widehat{a}$中斜率和截距的最小二乘估计公式分别为:
$\widehat{b}$=$\frac{\sum_{i=1}^{n}({t}_{i}-\overline{t})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}}$=$\frac{\sum_{i=1}^{n}{t}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{t}_{i}}^{2}-n{\overline{t}}^{2}}$,$\widehat{a}$=$\widehat{y}$-$\widehat{b}$t.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某中学为了了解全校学生的上网情况,在全校采用随机抽样的方法抽取了40名学生(其中男女生人数恰好各占一半)进行问卷调查,并进行了统计,按男女分为两组,再将每组学生的月上网次数分为5组:[0,5),[5,10),[10,15),[15,20),[20,25],得到如图所示的频率分布直方图:
(Ⅰ)写出a的值;
(Ⅱ)求在抽取的40名学生中月上网次数不少于15次的学生人数;
(Ⅲ)在抽取的40名学生中,从月上网次数不少于20次的学生中随机抽取2人,求至少抽到1名女生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设锐角△ABC的三个内角A,B,C的对边分别为a,b,c成等比数列,且sinAsinC=$\frac{3}{4}$,则角B=(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设函数f(x)=sin2x+a(1+cosx)-2x在x=$\frac{5π}{6}$处取得极值.
(1)若f(x)的导函数为f'(x),求f'(x)的最值;
(2)当x∈[0,π]时,求f(x)的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若函数f(x)=$\sqrt{({m-1}){x^2}-({1-m})x+1}$的定义域是R,则实数m的取值范围是[1,5].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知等差数列{an}的前n项和为Sn,a2=0,S5=2a4-1.
(1)求数列{an}的通项公式;
(2)设bn=2${\;}^{{a}_{n}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知点 A(1,3),B(3,1),C(-1,0),则△ABC的面积为(  )
A.5B.$5\sqrt{2}$C.10D.$10\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知圆O:x2+y2=4和圆C:x2+(y-4)2=1.
(1)判断圆O和圆C的位置关系;
(2)过圆C的圆心C作圆O的切线l,求切线l的方程;(结果必须写成一般式).

查看答案和解析>>

同步练习册答案