分析 (1)求出函数的导数,根据函数在x=$\frac{5π}{6}$处取得极值,求出a的值,从而求出函数的单调区间,求出函数的最值即可;
(2)求出函数的在闭区间的单调性,求出函数的最值即可.
解答 解:(1)f′(x)=2cos2x-asinx-2,
∵f(x)在x=$\frac{5π}{6}$处取得极值,
∴f′($\frac{5π}{6}$)=1-$\frac{1}{2}$a-2=0,解得:a=-2,
∴f′(x)=-4${(sinx-\frac{1}{4})}^{2}$+$\frac{1}{4}$,
∵-1≤sinx≤1,
∴sinx=$\frac{1}{4}$时,f′(x)取得最大值$\frac{1}{4}$,
sinx=-1时,f′(x)取得最小值-6;
(2)由f′(x)=-4sin2x+2sinx≥0,解得:0≤sinx≤$\frac{1}{2}$,
∵x∈[0,π],∴x∈[0,$\frac{π}{6}$]∪[$\frac{5π}{6}$.π]时,f′(x)≥0,
x∈[$\frac{π}{6}$,$\frac{5π}{6}$]时,f′(x)≤0,
∴f(x)在[0,$\frac{π}{6}$]递增,在[$\frac{π}{6}$,$\frac{5π}{6}$]递减,在[$\frac{5π}{6}$.π]递增,
∵f(0)=-4,f($\frac{5π}{6}$)=$\frac{3\sqrt{3}-12-10π}{6}$<$\frac{-12-12}{6}$,
∴f(x)的最小值是f($\frac{5π}{6}$)=$\frac{3\sqrt{3}-12-10π}{6}$,
∵f($\frac{π}{6}$)=-2-$\frac{\sqrt{3}}{2}$-$\frac{π}{3}$,f(π)=-2π<-4<f($\frac{π}{6}$),
∴f(x)的最大值是f($\frac{π}{6}$)=-$\frac{12+3\sqrt{3}+2π}{6}$.
点评 本题考查了函数的单调性、最值问题,考查导数的应用,是一道中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 位于线段AB上 | B. | 位于线段AD上 | C. | 只能在A点 | D. | 只能在AB的中点 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 50 | B. | -7 | C. | -48 | D. | -49 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com