18£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=tcos¦Á\\ y=-2+tsin¦Á\end{array}\right.$£¨tΪ²ÎÊý£©£¬Ö±ÏßlÓëÁ½¸öÖ±½Ç×ø±êÖáµÄ½»µã·Ö±ðÊÇA£¬B£®ÒÔOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬°ëÔ²CµÄ¼«×ø±ê·½³ÌΪ¦Ñ=2sin¦È£¬$¦È¡Ê£¨\frac{¦Ð}{4}£¬\frac{3¦Ð}{4}£©$£¬°ëÔ²CµÄÔ²ÐÄÊÇC£®
£¨¢ñ£©ÇóÖ±ÏßlµÄÆÕͨ·½³ÌÓë°ëÔ²CµÄ²ÎÊý·½³Ì£»
£¨¢ò£©ÈôµãDÔÚ°ëÔ²CÉÏ£¬Ö±ÏßCDµÄÇãб½ÇÊÇ2¦Á£¬¡÷ABDµÄÃæ»ýÊÇ4£¬ÇóDµÄÖ±½Ç×ø±ê£®

·ÖÎö £¨¢ñ£©ÏûÈ¥²ÎÊý£¬¿ÉµÃÖ±ÏßlµÄÆÕͨ·½³Ì£¬ÀûÓðëÔ²CµÄÖ±½Ç×ø±ê·½³ÌÊÇx2+£¨y-1£©2=1£¨y£¾1£©£¬Ð´³ö°ëÔ²CµÄ²ÎÊý·½³Ì£»
£¨¢ò£©ÈôµãDÔÚ°ëÔ²CÉÏ£¬Ö±ÏßCDµÄÇãб½ÇÊÇ2¦Á£¬¡÷ABDµÄÃæ»ýÊÇ4£¬Çó³ö¦Á£¬¼´¿ÉÇóDµÄÖ±½Ç×ø±ê£®

½â´ð ½â£º£¨¢ñ£©Ö±ÏßlµÄÆÕͨ·½³ÌÊÇy=xtan¦Á-2£®
°ëÔ²CµÄÖ±½Ç×ø±ê·½³ÌÊÇx2+£¨y-1£©2=1£¨y£¾1£©£®
ËüµÄ²ÎÊý·½³ÌÊÇ$\left\{\begin{array}{l}x=cos¦Õ\\ y=1+sin¦Õ\end{array}\right.$£¬ÆäÖЦÕÊDzÎÊý£¬ÇÒ¦Õ¡Ê£¨0£¬¦Ð£©£®¡­£¨5·Ö£©
£¨¢ò£©ÓÉ£¨¢ñ£©¿ÉÉèD£¨cos2¦Á£¬1+sin2¦Á£©£¬ÆäÖЦÁ$¡Ê£¨0£¬\frac{¦Ð}{2}£©$£®
ÔÙÓÉ£¨¢ñ£©¿ÉÖª$|AB|=\frac{2}{sin¦Á}$£®
Dµ½Ö±Ïßl¾àÀëÊÇ$\frac{|cos2¦Á•tan¦Á-£¨1+sin2¦Á£©-2|}{{\sqrt{{{tan}^2}¦Á+1}}}=3cos¦Á+sin¦Á$£®
ÒòΪ¡÷ABDµÄÃæ»ýÊÇ4£¬ËùÒÔ$\frac{1}{2}•\frac{2}{sin¦Á}•£¨3cos¦Á+sin¦Á£©=4$£¬µÃtan¦Á=1£¬$¦Á=\frac{¦Ð}{4}$£¬
¹ÊDµÄÖ±½Ç×ø±êÊÇD£¨0£¬2£©£®¡­£¨10·Ö£©

µãÆÀ ±¾Ì⿼²é²ÎÊý·½³Ì¡¢¼«×ø±ê·½³Ì£¬Ö±½Ç×ø±ê·½³ÌµÄ»¥»¯£¬¿¼²éµãµ½Ö±Ïß¾àÀ빫ʽµÄÔËÓã¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÏÂÁÐËÄ×麯ÊýÖУ¬±íʾͬһº¯ÊýµÄÊÇ£¨¡¡¡¡£©
A£®f£¨x£©=|x|ºÍg£¨x£©=$\sqrt{{x}^{2}}$B£®f£¨x£©=$\sqrt{{x}^{2}}$ºÍ g£¨x£©=£¨$\sqrt{x}$£©2
C£®f£¨x£©=$\frac{{x}^{2}-1}{x-1}$ºÍg£¨x£©=x+1D£®f£¨x£©=x-1Óëg£¨x£©=$\frac{{x}^{2}}{x}$-1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®Ä³ÊÐͳ¼Æ¾Ö¾ÍijµØ¾ÓÃñµÄÔÂÊÕÈëµ÷²éÁË10000ÈË£¬²¢¸ù¾ÝËùµÃÊý¾Ý»­³öÑù±¾µÄƵÂÊ·Ö²¼Ö±·½Í¼ÈçͼËùʾ£®£¨Ã¿¸ö·Ö×é°üÀ¨×ó¶Ëµã£¬²»°üÀ¨ÓҶ˵㣬ÈçµÚÒ»×é±íʾ[1 000£¬1 500£©£©

£¨1£©Çó¾ÓÃñÊÕÈëÔÚ[3 000£¬3 500£©µÄƵÂÊ£»
£¨2£©¸ù¾ÝƵÂÊ·Ö²¼Ö±·½Í¼¹ÀËã³öÑù±¾Êý¾ÝµÄƽ¾ùÊý£¬ÖÚÊý£¬ÖÐλÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®É躯Êýf£¨x£©=sin2x+a£¨1+cosx£©-2xÔÚx=$\frac{5¦Ð}{6}$´¦È¡µÃ¼«Öµ£®
£¨1£©Èôf£¨x£©µÄµ¼º¯ÊýΪf'£¨x£©£¬Çóf'£¨x£©µÄ×îÖµ£»
£¨2£©µ±x¡Ê[0£¬¦Ð]ʱ£¬Çóf£¨x£©µÄ×îÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®º¯Êýf£¨x£©ÊǶ¨ÒåÔÚ[-1£¬1]ÉϵÄÔöº¯Êý£¬Èôf£¨x-1£©£¼f£¨x2-1£©£¬Ôòx·¶Î§ÊÇ£¨¡¡¡¡£©
A£®£¨1£¬+¡Þ£©¡È£¨-¡Þ£¬0£©B£®£¨0£¬1£©C£®$£¨{1£¬\sqrt{2}}]$D£®$£¨{1£¬\sqrt{2}}]¡È[{-\sqrt{2}£¬0}£©$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖªµÈ²îÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬a2=0£¬S5=2a4-1£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©Éèbn=2${\;}^{{a}_{n}}$£¬ÇóÊýÁÐ{bn}µÄǰnÏîºÍTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®ÒÑÖª¼¯ºÏA={x|ax2-2x+1=0}ÖÁ¶àÓÐÁ½¸ö×Ó¼¯£¬ÔòaµÄȡֵ·¶Î§a¡Ý1»òa¡Ü-1»òa=0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÇóÊʺÏÏÂÁÐÌõ¼þµÄË«ÇúÏߵıê×¼·½³Ì£º
£¨1£©Á½½¹µã×ø±êΪ£¨0£¬-5£©£¬£¨0£¬5£©£¬ÇÒa=4£»
£¨2£©Á½½¹µã×ø±êΪ£¨0£¬-6£©£¬£¨0£¬6£©£¬ÇÒ¾­¹ýµã£¨2£¬-5£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÒÑÖªº¯Êýf£¨x£©=sinxcosx-$\sqrt{3}{cos^2}$x£¬Ôòº¯Êýf£¨x£©Í¼ÏóµÄÒ»Ìõ¶Ô³ÆÖáÊÇ£¨¡¡¡¡£©
A£®$x=\frac{5¦Ð}{12}$B£®$x=\frac{¦Ð}{3}$C£®$x=\frac{¦Ð}{6}$D£®$x=\frac{¦Ð}{12}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸