精英家教网 > 高中数学 > 题目详情
8.已知函数f(x)=sinxcosx-$\sqrt{3}{cos^2}$x,则函数f(x)图象的一条对称轴是(  )
A.$x=\frac{5π}{12}$B.$x=\frac{π}{3}$C.$x=\frac{π}{6}$D.$x=\frac{π}{12}$

分析 先根据二倍角公式和两角差的正弦公式化简得到f(x)=sin(2x-$\frac{π}{3}$)-$\frac{\sqrt{3}}{2}$,再根据对称轴的定义即可求出.

解答 解:f(x)=sinxcosx-$\sqrt{3}{cos^2}$x=$\frac{1}{2}$sin2x-$\frac{\sqrt{3}}{2}$cos2x-$\frac{\sqrt{3}}{2}$=sin(2x-$\frac{π}{3}$)-$\frac{\sqrt{3}}{2}$,
则其对称轴为2x-$\frac{π}{3}$=kπ+$\frac{π}{2}$,k∈Z,
∴x=$\frac{kπ}{2}$+$\frac{5π}{12}$,k∈Z,
当k=0时,x=$\frac{5π}{12}$,
∴函数f(x)图象的一条对称轴是x=$\frac{5π}{12}$,
故选:A

点评 本题考查了三角函数的化简,以及正弦函数的图象和性质,关键掌握二倍角公式,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.在平面直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}x=tcosα\\ y=-2+tsinα\end{array}\right.$(t为参数),直线l与两个直角坐标轴的交点分别是A,B.以O为极点,x轴的正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=2sinθ,$θ∈(\frac{π}{4},\frac{3π}{4})$,半圆C的圆心是C.
(Ⅰ)求直线l的普通方程与半圆C的参数方程;
(Ⅱ)若点D在半圆C上,直线CD的倾斜角是2α,△ABD的面积是4,求D的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在等比数列{an}中,若a1=-1,a2+a3=-2,则其公比为-2或1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,△ABC是圆O的内接三角形,P是BA的延长线上一点,且PC切圆O于点C.
(1)求证:AC•PC=PA•BC;
(2)若PA=AB=BC,且PC=4,求AC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知定义在R上的函数f(x)满足f(x+y)=f(x)+f(y)+4xy,f(1)=1,则f(-2)=(  )
A.-2B.2C.6D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.△ABC是边长为2的等边三角形,向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{AB}$=2$\overrightarrow{a}$,$\overrightarrow{AC}$=2$\overrightarrow{a}$+$\overrightarrow{b}$,则向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为(  )
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}中,a1=-2,前n项和Sn满足an+1+3Sn+2=0(n∈N*).
(1)求数列{an}的通项公式;
(2)是否存在整数对(m,n)满足$a_n^2-m{a_n}-4m-8=0$?若存在,求出所有满足题意的整数对(m,n);若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列命题正确的是(  )
A.命题?x0∈R,x${\;}_{0}^{2}$+1>3x0的否定是:?x∈R,x2+1<3x
B.命题△ABC中,若A>B,则cosA>cosB的否命题是真命题
C.平面向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角是钝角的充要条件是:$\overrightarrow{a}$•$\overrightarrow{b}$<0
D.ω=1是函数f(x)=sinωx-cosωx的最小正周期为2π的充分不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若命题p是真命题,命题q是假命题,则下列命题一定是真命题的是(  )
A.p∧qB.p∨qC.(¬p)∧qD.(¬p)∨q

查看答案和解析>>

同步练习册答案