精英家教网 > 高中数学 > 题目详情
已知函数f(x)的定义域为(0,+∞)且对任意的正实数x,y都有f(xy)=f(x)+f(y),且当x>1时,f(x)>0,f(4)=1
(1)求f(1)及f(
1
16
)

(2)解不等式f(x)+f(x-3)≤1.
考点:抽象函数及其应用
专题:函数的性质及应用
分析:(1)根据对任意的正实数x,y都有f(xy)=f(x)+f(y),令x=4,y=1,即可求出f(1)的值;令x=4,y=4,代入求得,即可求得f(
1
16
)
的值;
(2)根据当x>1时,f(x)>0,判断函数的单调性,把f(x)+f(x-3)≤1化为f[x(x-3)]≤1=f(4),根据单调性,得到不等式解得即可.
解答: 解:(1)令x=4,y=1,
则f(4)=f(4×1)=f(4)+f(1).
∴f(1)=0.
再令x=4,y=4得
f(16)=f(4×4)=f(4)+f(4)=2,
f(1)=f(16×
1
16
)=f(
1
16
)+f(16)=0,
故f(
1
16
)=-2.
(2)设x1,x2>0且x1>x2,于是f(
x1
x2
)>0,
∴f(x1)=f(
x1
x2
x2
)=f(
x1
x2
)+f(x2)>f(x2).
∴f(x)为x∈(0,+∞)上的增函数.
又∵f(x)+f(x-3)=f[x(x-3)]≤1=f(4),
x>0
x-3>0
x(x-3)≤4

∴3<x≤4.
∴原不等式的解集为{x|3<x≤4}.
点评:本题考查抽象函数及其应用,以及利用函数单调性的定义判断函数的单调性,并根据函数的单调性解函数值不等式,体现了转化的思想,在转化过程中一定注意函数的定义域.解决抽象函数的问题一般应用赋值法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=-an-(
1
2
n-1+2(n为正整数).
(Ⅰ)令bn=2nan,求证数列{bn}是等差数列,并求数列{an}的通项公式;
(Ⅱ)令cn=
n+1
n
an,Tn=c1+c2+…+cn,求证:1≤Tn≤3.

查看答案和解析>>

科目:高中数学 来源: 题型:

在无穷数列{an}中,a1=1,对于任意n∈N*,都有an∈N*,an<an+1.设m∈N*,记使得an≤m成立的n的最大值为bm
(Ⅰ)设数列{an}为1,2,4,10,…,写出b1,b2,b3的值;
(Ⅱ)若{an}是公差为2的等差数列,数列{bm}的前m项的和为Sm,求使得Sm>2014成立的m的最小值;
(Ⅲ)设ap=q,a1+a2+…+ap=A,b1+b2+…+bq=B,请你直接写出B与A的关系式,不需写推理过程.

查看答案和解析>>

科目:高中数学 来源: 题型:

设△ABC的内角A,B,C的对边分别a,b,c且c=3,C=
π
3
,若sin(A+C)=2sinA,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在四棱锥P-ABCD中,四边形ABCD为菱形,∠ABC=60°,△PCB为正三角形,M,N分别为BC,PD的中点.
(Ⅰ)求证:MN∥面APB;
(Ⅱ)若平面PCB⊥平面ABCD,求二面角B-NC-P的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

用适当方法证明:
(1)已知:a>0,b>0,求证:
a
b
+
b
a
a
+
b

(2)若x,y∈R,x>0,y>0,且x+y>2.求证:
1+x
y
1+y
x
中至少有一个小于2.

查看答案和解析>>

科目:高中数学 来源: 题型:

若等差数列{an}中,公差d>0,前n项和为Sn,且a2•a3=45,a1+a4=14,
(1)求数列{an}的通项公式;
(2)通过bn=
Sn
n+c
构造一个新数列{bn},是否存在一个非零常数c,使{bn}也为等差数列;
(3)在(2)中,求f(n)=
bn
(n+30)•bn+1-62n
(n∈N*)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a3=8,an+1=2an
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=log2an,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

集合A={x| x2-x-6<0},B={x| y=
x-1
}
,则A∩B=
 

查看答案和解析>>

同步练习册答案