【题目】已知直线l:x+ay-1=0(a∈R)是圆C:x2+y2-4x-2y+1=0的对称轴.过点A(-4,a)作圆C的一条切线,切点为B,则|AB|=________.
科目:高中数学 来源: 题型:
【题目】某购物商场分别推出支付宝和微信“扫码支付”购物活动,活动设置了一段时间的推广期,由于推广期内优惠力度较大,吸引越来越多的人开始使用“扫码支付”.现统计了活动刚推出一周内每天使用扫码支付的人次,用
表示活动推出的天数,
表示每天使用扫码支付的人次,统计数据如下表所示:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(1)根据散点图判断,在推广期内,扫码支付的人
次关于活动推出天数
的回归方程适合用
来表示,求出该回归方程,并预测活动推出第
天使用扫码支付的人次;
(2)推广期结束后,商场对顾客的支付方式进行统计,结果如下表:
支付方式 | 现金 | 会员卡 | 扫码 |
比例 |
|
|
|
商场规定:使用现金支付的顾客无优惠,使用会员卡支付的顾客享受
折优惠,扫码支付的顾客随机优惠,根据统计结果得知,使用扫码支付的顾客,享受
折优惠的概率为
,享受
折优惠的概率为
,享受
折优惠的概率为
.现有一名顾客购买了
元的商品,根据所给数据用事件发生的频率来估计相应事件发生的概率,估计该顾客支付的平均费用是多少?
参考数据:设
,
,
,![]()
参考公式:对于一组数据
,
,…,
,其回归直线
的斜率和截距的最小二乘估计公式分别为:
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆
,圆
,动圆P与圆M外切并且与圆N内切,圆心P的轨迹为曲线C.
(1)求曲线C的方程;
(2)设不经过点
的直线l与曲线C相交于A,B两点,直线QA与直线QB的斜率均存在且斜率之和为-2,证明:直线l过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以下四个命题:
①“若
,则
”的逆否命题为真命题
②“
”是“函数
在区间
上为增函数”的充分不必要条件
③若
为假命题,则
,
均为假命题
④对于命题
:
,
,则
为:
,![]()
其中真命题的个数是( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
的两个顶点
的坐标分别为
,
,且
所在直线的斜率之积等于
,记顶点
的轨迹为
.
(Ⅰ)求顶点
的轨迹
的方程;
(Ⅱ)若直线
与曲线
交于
两点,点
在曲线
上,且
为
的重心(
为坐标原点),求证:
的面积为定值,并求出该定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校为了了解高一年级学生学习数学的状态,从期中考试成绩中随机抽取50名学生的数学成绩,按成绩分组:第1组
,第2组
,第3组
,第4组
,第5组
,得到的频率分布直方图如图所示.
![]()
(1)由频率分布直方图,估计这50名学生数学成绩的中位数和平均数(保留到0.01);
(2)该校高一年级共有1000名学生,若本次考试成绩90分以上(含90分)为“优秀”等次,则根据频率分布直方图估计该校高一学生数学成绩达到“优秀”等次的人数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】3个红球与3个黑球随机排成一行,从左到右依次在球上标记1,2,3,4,5,6,则红球上的数字之和小于黑球上的数字之和的概率为( )
A.
B.![]()
C.
D.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com