精英家教网 > 高中数学 > 题目详情
11.下列判断中错误的是(  )
A.若ξ~B(4,0.25),则Dξ=1
B.“am2<bm2”是“a<b”的充分不必要条件
C.若p、q均为假命题,则“p且q”为假命题
D.命题“?x∈R,x2-x-1≤0”的否定是“?x0∈R,x02-x0-1>0”

分析 由方差公式求得方差判断A;利用充分必要条件的判定方法判断B;由复合命题的真假判断判断C;写出全称命题的否定判断D.

解答 解:对于A,若ξ~B(4,0.25),则Dξ=4×0.25(1-0.25)=0.75,故A错误;
对于B,由am2<bm2,得a<b,反之,由a<b,不一定有am2<bm2,如m2=0,故“am2<bm2”是“a<b”的充分不必要条件,B正确;
对于C,若p、q均为假命题,则“p且q”为假命题,正确;
对于D,命题“?x∈R,x2-x-1≤0”的否定是“?x0∈R,x02-x0-1>0”,D正确.
∴错误的命题是A,
故选:A.

点评 本题考查命题的真假判断与应用,考查了复合命题的真假判断,考查充分必要条件的求法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.若(sinθ+cosθ)2=2x+2-x,θ∈(0,$\frac{π}{2}$),则$\frac{1}{sinθ}$=(  )
A.1B.$\frac{{\sqrt{3}}}{3}$C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知命题p:?x∈N*,3x2-2x+5>lnx,则¬p为(  )
A.?x∈N*,3x2-2x+5<lnxB.?x∈N*,3x2-2x+5≤lnx
C.?x∈N*,3x2-2x+5<lnxD.?x∈N*,3x2-2x+5≤lnx

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.等差数列{an}前9项的和等于前4项的和.若a4+ak=0,则k=10.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数f(x)=2sin(ωx+φ)(ω>0,0<φ<π)的图象如图所示,已知图象经过点A(0,1),B($\frac{π}{3}$,-1),则f(x)=$f(x)=2sin(3x+\frac{π}{6})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.P(3cosθ,sinθ)是锐角α终边上一点,其中0<θ<$\frac{π}{2}$.记y=θ-α,则 y的最大值是(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=2+ax,若f(f(0))=4a.
(1)求实数a的值;
(2)计算f(3)-f(-1)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=x4lnx-a(x4-1),a∈R.
(1)求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)若当x≥1时,f(x)≥0恒成立,求实数a的取值范围;
(3)f(x)的极小值为φ(a),当a>0时,求证:$\frac{1}{4}({{e^{1-\frac{1}{4a}}}-{e^{4a-1}}})≤φ(a)<0$.(e=2.71828…为自然对数的底)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,直三棱柱ABC-A1B1C1的底面为正三角形,E、F分别是BC、CC1的中点.
(1)证明:平面AEF⊥平面B1BCC1
(2)若D为AB中点,∠CA1D=45°且AB=2,求三棱锥F-AEC的表面积.

查看答案和解析>>

同步练习册答案