精英家教网 > 高中数学 > 题目详情
6.函数f(x)=2sin(ωx+φ)(ω>0,0<φ<π)的图象如图所示,已知图象经过点A(0,1),B($\frac{π}{3}$,-1),则f(x)=$f(x)=2sin(3x+\frac{π}{6})$.

分析 通过函数的图象求出函数的周期,然后求出ω,利用函数的图象经过的特殊点求出φ,从而可求函数解析式.

解答 解:∵图象经过点A(0,1),B($\frac{π}{3}$,-1),
A,B两个点的纵坐标相反,从点A到点B经过半个周期,
∴$\frac{π}{3}$=kT+$\frac{T}{2}$=k•$\frac{2π}{ω}$+$\frac{π}{ω}$,k∈Z,(其中T为f(x)的周期),
解得:ω=6k+3,k∈Z,
∵ω>0,
∴当k=0时,ω值为3,
又∵图象经过点A(0,1),f(x)=2sin(ωx+φ),
∴1=2sinφ,即sinφ=$\frac{1}{2}$,
∴由0<φ<π,由函数的图象可得φ=$\frac{π}{6}$,
∴$f(x)=2sin(3x+\frac{π}{6})$.
故答案为:$f(x)=2sin(3x+\frac{π}{6})$.

点评 本题主要考查了由y=Asin(ωx+φ)的部分图象确定其解析式,考查了三角函数的图象的应用,周期的求法,函数的图象经过的特殊点的应用,考查计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.若过点(-$\sqrt{5}$,0)的直线L与曲线y=$\sqrt{1-{x}^{2}}$有公共点,则直线L的斜率的取值范围为(  )
A.[-$\frac{1}{2}$,$\frac{1}{2}$]B.[-$\frac{1}{2}$,0]C.[0,$\sqrt{6}$]D.[0,$\frac{1}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.一个几何体的三视图为如图所示的三个直角三角形,则该几何体表面的直角三角形的个数为4个.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.多面体ABCDFE中,底面四边形ABCD为矩形,EF∥AD,AE=FD,FG=GD,AD=2AB=2EF=2,且四边形EADF的面积为$\frac{3\sqrt{3}}{4}$.
(1)判断直线BF与平面ACG的关系,并说明理由;
(2)若平面EADF⊥平面ABCD,求平面FBC与平面ACG形成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.正三棱柱ABC-A1B1C1中,AB=6,AA1=4,D为BC的中点.
(1)求证:A1B∥平面ADC1
(2)在线段BB1上是否存在点P,使得CP⊥平面ADC1.若存在,请确定点P的位置;若不存在,请说明理由.
(3)求点C到平面ADC1的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列判断中错误的是(  )
A.若ξ~B(4,0.25),则Dξ=1
B.“am2<bm2”是“a<b”的充分不必要条件
C.若p、q均为假命题,则“p且q”为假命题
D.命题“?x∈R,x2-x-1≤0”的否定是“?x0∈R,x02-x0-1>0”

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在Rt△ABC中,A=$\frac{π}{2}$,AB=1,AC=2,以AB方向、AC方向为x轴、y轴建立平面直角坐标系,点P(x,y)在△ABC内部及边界上运动,记z=x+y,则z的最大值是2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.将方程组写成矩阵形式:
$\left\{\begin{array}{l}{2x+y-z=0}\\{7x+10y=330}\\{5y+8z=220}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,△ABC为⊙O的内接三角形,D,E分别为BC,AB的中点,直线DE交圆O于F,G,且直线DE与过A点的切线交于点P,DF=1,DE=2,PE=3.
(1)求证:△PEA~△BDE;
(2)求线段PA的长.

查看答案和解析>>

同步练习册答案