精英家教网 > 高中数学 > 题目详情
15.设sin2α=sina,α∈(0,$\frac{π}{2}$),则tan2α的值是-$\sqrt{3}$.

分析 将已知等式左右两边同时除以sina,利用同角三角函数间的基本关系弦化切求出tanα的值,然后将所求的式子利用二倍角的正切函数公式化简后,把tanα的值代入即可求出值.

解答 解:∵sin2a=sina,
∴2sinαcosα=sinα.
∵α∈(0,$\frac{π}{2}$),
∴sinα≠0,
∴cosα=$\frac{1}{2}$,则α=$\frac{π}{3}$,
∴tanα=$\frac{\sqrt{3}}{3}$,
∴tan2α=$\frac{2tanα}{1-ta{n}^{2}α}$=$\frac{2×\frac{\sqrt{3}}{3}}{1-\frac{1}{3}}$=-$\sqrt{3}$.
故答案为:-$\sqrt{3}$.

点评 此题考查了二倍角的正切函数公式,以及同角三角函数间的基本关系,熟练掌握公式及基本关系是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.某老师从星期一到星期五收到信件数分别是10,6,8,5,6,则该组数据的方差s2=(  )
A.$\frac{14}{5}$B.3C.$\frac{16}{5}$D.$\frac{18}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知复数z=a+i,若z+$\overline z$=4,则复数z的共轭复数$\overline z$=(  )
A.2+iB.2-iC.-2+iD.-2-i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数$f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<\frac{π}{2})$的图象过点$P(\frac{π}{12},0)$,图象上与点P最近的一个顶点是$Q(\frac{π}{3},5)$.
(1)求函数f(x)的解析式及其对称中心;    
(2)作出函数在[0,π]上的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知$sin(α+\frac{π}{4})=-\frac{1}{3}$,则$cos(α-\frac{π}{4})$的值为(  )
A.$-\frac{1}{3}$B.$\frac{1}{3}$C.$\frac{2\sqrt{2}}{3}$D.-$\frac{2\sqrt{2}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图,E、F分别是矩形ABCD的边BC、CD的中点,|$\overrightarrow{AB}$|=4,|$\overrightarrow{BC}$|=3,则向量$\overrightarrow{AE}$-$\overrightarrow{AF}$的模长等于(  )
 
A.2.5B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设{an}是正项数列,其前n项和Sn满足:4Sn=(an-1)(an+3),则an=2n+1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知命题p:不等式|x-1|>m-1的解集为R,命题q:f(x)=-(5-2m)x在R上是减函数.若p∨q为真命题,p∧q为假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列命题正确的个数为
?“?x∈R都有x2≥0”的否定是“?x0∈R使得x02≤0”;
?“x≠3”是“x≠3”成立的充分条件;
?命题“若m≤$\frac{1}{2}$,则方程mx2+2x+2=0有实数根”的否命题(  )
A.0B.1C.2D.3

查看答案和解析>>

同步练习册答案