精英家教网 > 高中数学 > 题目详情
12.设x、y满足约束条件$\left\{\begin{array}{l}{|2x-y|≤2}\\{|2x+y|≤2}\end{array}\right.$,则z=2x+y的最小值是$\frac{1}{4}$.

分析 由约束条件作出可行域,令t=x+y,化为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入求得t的最小值,则z=2x+y的最小值可求.

解答 解:由约束条件$\left\{\begin{array}{l}{|2x-y|≤2}\\{|2x+y|≤2}\end{array}\right.$作出可行域如图,

令t=x+y,化为y=-x+t,由图可知,当直线y=-x+t过A(0,-2)时,直线在y轴上的截距最小,t有最小值为-2.
∴z=2x+y的最小值是${2}^{-2}=\frac{1}{4}$.
故答案为:$\frac{1}{4}$.

点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知集合Rn={X|X=(x1,x2,…,xn),xi∈{0,1},i=1,2,…,n}(n≥2).对于A=(a1,a2,…,an)∈Rn,B=(b1,b2,…,bn)∈Rn,定义A与B之间的距离为d(A,B)=|a1-b1|+|a2-b2|+…|an-bn|=$\sum_{i=1}^n{|{{a_i}-{b_i}}|}$.
(Ⅰ)写出R2中的所有元素,并求两元素间的距离的最大值;
(Ⅱ)若集合M满足:M⊆R3,且任意两元素间的距离均为2,求集合M中元素个数的最大值并写出此时的集合M;
(Ⅲ)设集合P⊆Rn,P中有m(m≥2)个元素,记P中所有两元素间的距离的平均值为$\overline d(P)$,证明$\overline d(P)≤\frac{mn}{2(m-1)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知a=2-1.2,b=log36,c=log510,则a,b,c的大小关系是(  )
A.c<b<aB.c<a<bC.a<b<cD.a<c<b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.中新网2016年12月19日电  根据预报,今天开始雾霾范围将进一步扩大,19日夜间至20日,雾霾最严重的时段部分地区PM2.5浓度峰值会超过500微克/立方米,而此轮雾霾最严重的时候,将有包括京津翼、山西、陕西、河南等11个省市在内的地区被雾霾笼罩,PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物,PM2.5日均值在35微克/立方米以下空气质量为一级;在35微克/立方米~75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标,某地区在2016年12月19日至28日每天的PM2.5监测数据的茎叶图如图所示:
(1)求出这些数据的中位数与极差;
(2)从所给的空气质量不超标的7天的数据中任意抽取2天的数据,求这2天中恰好有1天空气质量为一级,另一天空气质量为二级的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设D、E、F分别为△ABC三边BC、CA、AB的中点,则$\overrightarrow{DA}$+$\overrightarrow{EB}$+$\overrightarrow{FC}$=(  )
A.$\frac{1}{2}$$\overrightarrow{DA}$B.$\frac{1}{3}$$\overrightarrow{DA}$C.$\frac{1}{4}$$\overrightarrow{DA}$D.$\overrightarrow{0}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=alnx+$\frac{1-{x}^{2}}{{x}^{2}}$,a∈R.
(1)若f(x)的最小值为0,求实数a的值;
(2)证明:当a=2时,f(x)≤f′(x)在x∈[1,2]上恒成立,其中f′(x)表示f(x)的导函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数f(x)=($\frac{2}{1+{e}^{x}}$-1)sinx的图象的大致形状是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0),过其左焦点F作x轴的垂线,交双曲线于A,B两点,若双曲线的右顶点在以AB为直径的圆外,则双曲线离心率的取值范围是(  )
A.(1,$\frac{3}{2}$)B.(1,2)C.($\frac{3}{2}$,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,则f(0)=1.

查看答案和解析>>

同步练习册答案