| A. | [-1,$\frac{1}{2}$] | B. | [-$\frac{1}{4}$,$\frac{1}{2}$] | C. | [-$\frac{5}{3}$,+∞) | D. | (-∞,-$\frac{5}{3}$] |
分析 作出平面区域,可得直线过定点D(-1,1),斜率为-1-$\frac{1}{m+1}$,结合图象可得m的不等式,解不等式可得m的范围.
解答
解:作出$\left\{\begin{array}{l}{x+y-3≤0}\\{x-2y-3≤0}\\{x≥1}\end{array}\right.$,所对应的区域(如图△ABC即内部),
直线(m+2)x+(m+1)y+1=0可化为2x+y+1+m(x+y)=0,过定点D(-1,1),斜率为-1-$\frac{1}{m+1}$,
要使直线(m+2)x+(m+1)y+1=0上存在点(x,y)满足$\left\{\begin{array}{l}{x+y-3≤0}\\{x-2y-3≤0}\\{x≥1}\end{array}\right.$,
则直线需与区域有公共点,KCD=$\frac{2-1}{1-(-1)}$=$\frac{1}{2}$,KAD=$\frac{-1-1}{1-(-1)}$=-1,
∴-1≤$-1-\frac{1}{m+1}$≤$\frac{1}{2}$,解得m$≤-\frac{5}{3}$,
故选:D.
点评 本题考查简单线性规划,准确作图是解决问题的关键,属中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{x}^{2}}{12}$-$\frac{{y}^{2}}{4}$=1 | B. | $\frac{{x}^{2}}{7}$-$\frac{{y}^{2}}{9}$=1 | C. | $\frac{{x}^{2}}{8}$-$\frac{{y}^{2}}{8}$=1 | D. | $\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | S>$\frac{1}{2}$ | B. | S>$\frac{3}{5}$ | C. | S>$\frac{7}{10}$ | D. | S>$\frac{4}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | p∧q | B. | p∧¬q | C. | ¬p∧q | D. | ¬p∧¬q |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com