精英家教网 > 高中数学 > 题目详情
3.已知直线(m+2)x+(m+1)y+1=0上存在点(x,y)满足$\left\{\begin{array}{l}{x+y-3≤0}\\{x-2y-3≤0}\\{x≥1}\end{array}\right.$,则实数m的取值范围是(  )
A.[-1,$\frac{1}{2}$]B.[-$\frac{1}{4}$,$\frac{1}{2}$]C.[-$\frac{5}{3}$,+∞)D.(-∞,-$\frac{5}{3}$]

分析 作出平面区域,可得直线过定点D(-1,1),斜率为-1-$\frac{1}{m+1}$,结合图象可得m的不等式,解不等式可得m的范围.

解答 解:作出$\left\{\begin{array}{l}{x+y-3≤0}\\{x-2y-3≤0}\\{x≥1}\end{array}\right.$,所对应的区域(如图△ABC即内部),
直线(m+2)x+(m+1)y+1=0可化为2x+y+1+m(x+y)=0,过定点D(-1,1),斜率为-1-$\frac{1}{m+1}$,
要使直线(m+2)x+(m+1)y+1=0上存在点(x,y)满足$\left\{\begin{array}{l}{x+y-3≤0}\\{x-2y-3≤0}\\{x≥1}\end{array}\right.$,
则直线需与区域有公共点,KCD=$\frac{2-1}{1-(-1)}$=$\frac{1}{2}$,KAD=$\frac{-1-1}{1-(-1)}$=-1,
∴-1≤$-1-\frac{1}{m+1}$≤$\frac{1}{2}$,解得m$≤-\frac{5}{3}$,
故选:D.

点评 本题考查简单线性规划,准确作图是解决问题的关键,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.向量$\overrightarrow m=({\sqrt{3}sin\frac{x}{4},1}),\overrightarrow n=({cos\frac{x}{4},{{cos}^2}\frac{x}{4}})$,记$f(x)=\overrightarrow m•\overrightarrow n$.
(1)若f(x)=1,求$cos({x+\frac{π}{3}})$的值;
(2)在锐角△ABC中,角A,B,C的对边分别是a,b,c,且满足(2a-c)cosB=bcosC,求f(2A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在如图所示的几何体中,EA⊥平面ABC,DB∥EA,AC⊥BC,且BC=BD=3,AE=2,AC=3$\sqrt{2}$,AF=2FB
(1)求证:CF⊥EF;
(2)求二面角D-CE-F的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知数列{an}的通项为an=$\left\{{\begin{array}{l}{n+\frac{15}{n},n≤5}\\{alnn-\frac{1}{4},n>5}\end{array}}$,若{an}的最小值为$\frac{31}{4}$,则实数a的取值范围是[$\frac{8}{ln6}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图1,一根长l(单位:cm)的线,一端固定,另一端悬挂一个小球,小球摆动时,离开平衡位置的位移s(单位:cm)与时间t(单位:s)的函数关系是:s=3cos($\sqrt{\frac{g}{l}}$t+$\frac{π}{3}$),t∈[0,+∞),(其中g≈1000cm/s2);

(1)当t=0时,小球离开平衡位置的位移s是多少cm?
(2)若l=40cm,小球每1s能往复摆动多少次?要使小球摆动的周期是1s,则线的长度应该调整为多少cm?
(3)某同学在观察小球摆动时,用照相机随机记录了小球的位置,他共拍摄了300张照片,并且想估算出大约有多少张照片满足小球离开平衡位置的距离(位移的绝对值)比t=0时小球离开平衡位置的距离小.为了解决这个问题,他通过分析,将上述函数化简为f(x)=3cos(x+$\frac{π}{3}$),x∈[0,2π).请帮他在图2中画出y=f(x)的图象并解决上述问题.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.过双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的右顶点作x轴的垂线,与C的一条渐近线相交于点A.若以C的右焦点为圆心、半径为4的圆经过A,O两点(O为坐标原点),则双曲线C的方程为(  )
A.$\frac{{x}^{2}}{12}$-$\frac{{y}^{2}}{4}$=1B.$\frac{{x}^{2}}{7}$-$\frac{{y}^{2}}{9}$=1C.$\frac{{x}^{2}}{8}$-$\frac{{y}^{2}}{8}$=1D.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.执行如图所示的程序框图,若输出k的值为6,则判断框内可填入的条件是(  )
A.S>$\frac{1}{2}$B.S>$\frac{3}{5}$C.S>$\frac{7}{10}$D.S>$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知命题p:?x∈R,x2-x+1≥0.命题q:若a2<b2,则a<b,下列命题为真命题的是(  )
A.p∧qB.p∧¬qC.¬p∧qD.¬p∧¬q

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知复数z=(1+i)(1+2i),其中i是虚数单位,则z的模是$\sqrt{10}$.

查看答案和解析>>

同步练习册答案