精英家教网 > 高中数学 > 题目详情
9.在直角坐标系xOy中,曲线C的参数方程为$\left\{\begin{array}{l}{x=2cosα}\\{y=2+2sinα}\end{array}\right.$(α为参数),直线l的参数方程为$\left\{\begin{array}{l}{x=\sqrt{3}-\frac{\sqrt{3}}{2}t}\\{y=3+\frac{1}{2}t}\end{array}\right.$(t为参数),在以坐标原点O为极点,x轴为正半轴为极轴的极坐标系中,过极点O的射线与曲线C相交于不同于极点的点A,且点A的极坐标为(2$\sqrt{3}$,θ),其中θ∈($\frac{π}{2}$,π)
(Ⅰ)求θ的值;
(Ⅱ)若射线OA与直线l相交于点B,求|AB|的值.

分析 (Ⅰ)曲线C的极坐标方程,利用点A的极坐标为(2$\sqrt{3}$,θ),θ∈($\frac{π}{2}$,π),即可求θ的值;
(Ⅱ)若射线OA与直线l相交于点B,求出A,B的坐标,即可求|AB|的值.

解答 解:(Ⅰ)曲线C的参数方程为$\left\{\begin{array}{l}{x=2cosα}\\{y=2+2sinα}\end{array}\right.$(α为参数),普通方程为x2+(y-2)2=4,极坐标方程为ρ=4sinθ,
∵点A的极坐标为(2$\sqrt{3}$,θ),θ∈($\frac{π}{2}$,π),∴θ=$\frac{2π}{3}$;
(Ⅱ)直线l的参数方程为$\left\{\begin{array}{l}{x=\sqrt{3}-\frac{\sqrt{3}}{2}t}\\{y=3+\frac{1}{2}t}\end{array}\right.$(t为参数),普通方程为x+$\sqrt{3}$y-4$\sqrt{3}$=0,
点A的直角坐标为(-$\sqrt{3}$,3),射线OA的方程为y=-$\sqrt{3}$x,
代入x+$\sqrt{3}$y-4$\sqrt{3}$=0,可得B(-2$\sqrt{3}$,6),∴|AB|=$\sqrt{3+9}$=2$\sqrt{3}$.

点评 本题考查三种方程的转化,考查两点间距离公式的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.若曲线 C1:y=x2与曲线 C2:y=aex(a≠0)存在公共切线,则a的取值范围为(-∞,0)∪(0,$\frac{4}{{e}^{2}}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图,在平行四边形ABCD中,∠BAD=$\frac{π}{3}$,AB=2,AD=1,若M、N分别是边AD、CD上的点,且满足$\frac{MD}{AD}$=$\frac{NC}{DC}$=λ,其中λ∈[0,1],则$\overrightarrow{AN}$•$\overrightarrow{BM}$的取值范围是(  )
A.[-3,1]B.[-3,-1]C.[-1,1]D.[1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在平面直角坐标系xOy中,已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,且经过点$(0,\;-2\sqrt{2})$,过椭圆的左顶点A作直线l⊥x轴,点M为直线l上的动点(点M与点A不重合),点B为椭圆右顶点,直线BM交椭圆C于点P.
(1)求椭圆C的方程.
(2)求证:AP⊥OM.
(3)试问:$\overrightarrow{OP}•\overrightarrow{OM}$是否为定值?若是定值,请求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某水泥厂销售工作人员根据以往该厂的销售情况,绘制了该厂日销售量的频率分布直方图,如图所示:将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.
(1)求未来3天内,连续2天日销售量不低于8吨,另一天日销售量低于8吨的概率;
(2)用X表示未来3天内日销售量不低于8吨的天数,求随机变量X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在平面直角坐标系xOy中,已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),圆O:x2+y2=r2(0<r<b).当圆O的一条切线l:y=kx+m与椭圆E相交于A,B两点.
(Ⅰ)当k=-$\frac{1}{2}$,r=1时,若点A,B都在坐标轴的正半轴上,求椭圆E的方程;
(Ⅱ)若以AB为直径的圆经过坐标原点O,探究a,b,r是否满足$\frac{1}{{a}^{2}}$+$\frac{1}{{b}^{2}}$=$\frac{1}{{r}^{2}}$,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.一个三角形可分为以内切圆半径为高,以原三角形三条边为底的三个三角形,类比此方法,若一个三棱锥的体积V=2,表面积S=3,则该三棱锥内切球的体积为(  )
A.81πB.16πC.$\frac{32π}{3}$D.$\frac{16π}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知菱形ABCD的边长为2,E为AB的中点,∠ABC=120°,则$\overrightarrow{DE}$•$\overrightarrow{BD}$的值为(  )
A.3B.-3C.$\sqrt{3}$D.-$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知数列{an}中,a1=2,a2=4,设Sn为数列{an}的前n项和,对于任意的n>1,n∈N*,Sn+1+Sn-1=2(Sn+1).
(1)求数列{an}的通项公式;
(2)设bn=$\frac{n}{{2}^{{a}_{n}}}$,求{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案