| A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{2}$ |
分析 根据极值点的定义和正弦函数的图象,求出函数f(x)的极大值点和极小值点,由条件列出方程,根据φ的范围求出φ的值.
解答 解:根据正弦函数的性质得,
函数的极大值点和极小值点分别是f(x)取最大值和最小值时的x的值,
由x+φ=$\frac{π}{2}+2kπ(k∈Z)$得,$x=-φ+\frac{π}{2}+2kπ(k∈Z)$,
则极大值点是$x=-φ+\frac{π}{2}+2kπ(k∈Z)$,
由x+φ=$-\frac{π}{2}+2k′π(k′∈Z)$得,$x=-φ-\frac{π}{2}+2k′π(k′∈Z)$,
则极小值点是$x=-φ-\frac{π}{2}+2k′π(k′∈Z)$,
由条件得,$-φ+\frac{π}{2}+2kπ$=2($-φ-\frac{π}{2}+2k′π$),
化简得,$φ=-\frac{3π}{2}+(4k′-2k)π(k、k′∈Z)$,
∵0<φ<π,∴当4k′-2k=2时,φ=$\frac{π}{2}$,
故选:D.
点评 本题考查正弦函数的图象与性质,以及函数极值点的定义,考查方程思想,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{7}$ | B. | $\frac{4}{7}$ | C. | $\frac{5}{7}$ | D. | $\frac{6}{7}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|x≥1} | B. | {x|x≥1或x=0} | C. | {x|x≥0} | D. | {x|x=0} |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com