精英家教网 > 高中数学 > 题目详情
5.已知f(x)=x3+3x2+6x,f(a)=1,f(b)=-9,则a+b的值为-2.

分析 推导出函数f(x)的图象关于(-1,-4)对称,(a,f(a)),(b,f(b))恰好关于(-1,-4)对称,由此能求出a+b的值.

解答 解:∵f(x)=x3+3x2+6x,f(a)=1,f(b)=-9,
∴f(x)=(x+1)3-3x-1+6x
=(x+1)3+3x-1
=(x+1)3+3(x+1)-4,
∴函数f(x)的图象关于(-1,-4)对称,
∵f(a)=1,f(b)=-9,
∴(a,f(a)),(b,f(b))恰好关于(-1,-4)对称,
∴a+b=-2.
故答案为:-2.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.如图,焦点在x轴上的椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{{b}^{2}}$=1的离心率e=$\frac{1}{2}$,F、A分别是椭圆的一个焦点和顶点,P是椭圆上任意一点,则$\overrightarrow{PF}$•$\overrightarrow{PA}$的最大值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知圆M过定点(0,1)且圆心M在抛物线x2=2y上运动,若x轴截圆M所得的弦为|PQ|,则弦长|PQ|等于(  )
A.2B.3
C.4D.与点位置有关的值

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知数列{an}的通项公式an=11-2n,设Tn=|a1|+|a2|+…+|an|,则T10的值为50.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图,在平行四边形ABCD中,∠BAD=$\frac{π}{3}$,AB=2,AD=1,若M、N分别是边AD、CD上的点,且满足$\frac{MD}{AD}$=$\frac{NC}{DC}$=λ,其中λ∈[0,1],则$\overrightarrow{AN}$•$\overrightarrow{BM}$的取值范围是(  )
A.[-3,1]B.[-3,-1]C.[-1,1]D.[1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=|x-1|+|x+1|,M为不等式f(x)<4的解集.
(1)求M;
(2)证明:对?a,b∈M,|ab+4|>|a+b|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在平面直角坐标系xOy中,已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,且经过点$(0,\;-2\sqrt{2})$,过椭圆的左顶点A作直线l⊥x轴,点M为直线l上的动点(点M与点A不重合),点B为椭圆右顶点,直线BM交椭圆C于点P.
(1)求椭圆C的方程.
(2)求证:AP⊥OM.
(3)试问:$\overrightarrow{OP}•\overrightarrow{OM}$是否为定值?若是定值,请求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在平面直角坐标系xOy中,已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),圆O:x2+y2=r2(0<r<b).当圆O的一条切线l:y=kx+m与椭圆E相交于A,B两点.
(Ⅰ)当k=-$\frac{1}{2}$,r=1时,若点A,B都在坐标轴的正半轴上,求椭圆E的方程;
(Ⅱ)若以AB为直径的圆经过坐标原点O,探究a,b,r是否满足$\frac{1}{{a}^{2}}$+$\frac{1}{{b}^{2}}$=$\frac{1}{{r}^{2}}$,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.${(\frac{5}{{\sqrt{x}}}-x)^m}$的展开式中各项系数的和为256,则该展开式的二项式系数的最大值为6.

查看答案和解析>>

同步练习册答案