分析 (1)根据绝对值不等式的性质将函数表示为分段函数形式,即可作出函数y=f(x)的图象;
(2)将不等式恒成立转化为最值问题进行求解即可.
解答 解:(1)①当x≤-1时,f(x)=-x-1-x+3=-2x+2;
②当-1<x<3时,f(x)=x+1+3-x=4;
③当x≥3时,f(x)=x+1+x-3=2x-2.
∴f(x)=$\left\{\begin{array}{l}-2x+2,x≤-1\\ 4,-1<x<3,2x-2,x≥3\end{array}$
∴y=f(x)的图象如图所示.![]()
(2)由(1)知f(x)的最小值为4,
则对任意x∈R,f(x)≥a2-3a恒成立等价为a2-3a≤4恒成立,
即a2-3a-4≤0,
即(a-4)(a+1)≤0,
解得-1≤a≤4.
故实数a的取值范围为[-1,4].
点评 本题主要考查函数恒成立问题,根据绝对值不等式的性质将绝对值函数转化为分段函数形式是解决本题的关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com