(1)根据点A在圆上,可求出m,然后设出PF的方程,根据直线与圆C相切,圆心到直线的距离等于半径建立关于k的方程,求出k值,问题解决.
(2)由抛物线的焦点坐标,直接可确定抛物线的标准方程为
.
(3)设出Q(x,y),然后可得
, 再利用
,
可得
, 然后利用函数的方法求出
的取值范围.
解:(1)点A代入圆C方程,得
.∵m<3,∴m=1.圆C:
.设直线PF的斜率为k,则PF:
,
即
.∵直线PF与圆C相切,∴
.解得
. 当k=
时,直线PF与x轴的交点横坐标为
,不合题意,舍去.
当k=
时,直线PF与x轴的交点横坐标为-4,∴符合题意,∴直线PF的方程为y=
x+2…………………6分
(2)设抛物线标准方程为y
2="-2px,"
∵F(-4,0), ∴p="8,"
∴抛物线标准方程为y
2=-16x…………………8分
(3)
,设Q(x,y),
,
.
∵y
2="-16x," ∴
.
∴
的取值范围是(-∞,30].…………………13分