精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax3+bx2-3x(a,b∈R),且f(x)在x=1和x=3处取得极值。
(1)求函数f(x)的解析式;
(2)设函数g(x)=f(x)+t,是否存在实数t,使得曲线y=g(x)与x轴有两个交点,若存在,求出t的值;若不存在,请说明理由。
解:(1)f'(x)=3ax2+2bx-3,
因为f(x)在x=1和x=3处取得极值,
所以x=1和x=3是f'(x)=0的两个根


所以
(2)


当x变化时,g'(x),g(x)变化情况如下表:

由上表可知:g(x)极大值=g(3)=t;g(x)极小值=g(1)=

∴由此可知x取足够大的正数时,有g(x)<0;x取足够小的负数时,有g(x)>0
因此,为使曲线y=g(x)与x轴有两个交点,结合g(x)的单调性,必有:g(x)极大值=g(3)=t=0,


所以存在t且t=0或符合题目要求。
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案