【题目】如图,在四面体ABCD中,截面PQMN是正方形,则下列命题中,正确的为________ (填序号).
①AC⊥BD;②AC∥截面PQMN;③AC=BD;④异面直线PM与BD所成的角为45°.
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面是菱形,,侧面是边长为2的等边三角形,点是的中点,且平面平面.
(I)求异面直线与所成角的余弦值;
(II)若点在线段上移动,是否存在点使平面与平面所成的角为?若存在,指出点的位置,否则说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设实数满足不等式函数无极值点.
(1)若“”为假命题,“”为真命题,求实数的取值范围;
(2)已知“”为真命题,并记为,且,若是的必要不充分条件,求正整数的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某农科所对冬季昼夜温差大小与反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了月日至月日的每天昼夜温差与实验室每天每颗种子中的发芽数,得到如下数据:
日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
温度x(℃) | 10 | 11 | 13 | 12 | 8 |
发芽数y(颗) | 23 | 25 | 30 | 26 | 16 |
设农科所确定的研究方案是:先从这组数据中选取组,用剩下的组数据求线性回归方程,再对被选取的组数据进行检验.
(1)求选取的组数据恰好是不相邻天数据的概率;
(2)若选取的是月日与月日的两组数据,请根据月日与月日的数据,求关于的线性回归方程;
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?
(注:)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,某生态园将一三角形地块的一角开辟为水果园种植桃树,已知角为,的长度均大于米,现在边界处建围墙,在处围竹篱笆.
(1)若围墙总 长度为米,如何围可使得三角形地块的面积最大?
(2)已知段围墙高米,段围墙高米,造价均为每平方米元.若围围墙用了元,问如何围可使竹篱笆用料最省?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面,底面是直角梯形,,是上的点.
(1)求证: 平面平面;
(2)若是的中点,且二面角的余弦值为,求直线与平面所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面为正方形,点是棱的中点,,平面平面.
(Ⅰ)求证://平面;
(Ⅱ)求证:平面;
(Ⅲ) 设,试判断平面⊥平面能否成立;若成立,写出的一个值(只需写出结论).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数在区间上, , , , , , 均可为一个三角形的三边长,则称函数为“三角形函数”.已知函数在区间上是“三角形函数”,则实数的取值范围为( )
A. B.
C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学有一调查小组为了解本校学生假期中白天在家时间的情况,从全校学生中抽取人,统计他们平均每天在家的时间(在家时间在小时以上的就认为具有“宅”属性,否则就认为不具有“宅”属性)
具有“宅”属性 | 不具有“宅”属性 | 总计 | |
男生 | 20 | 50 | 70 |
女生 | 10 | 40 | 50 |
总计 | 30 | 90 | 120 |
(1)请根据上述表格中的统计数据填写下面列联表,并通过计算判断能否在犯错误的概率不超过
的前提下认为“是否具有‘宅’属性与性别有关?”
(2)采用分层抽样的方法从具有“宅”属性的学生里抽取一个人的样本,其中男生和女生各多少人?
从人中随机选取人做进一步的调查,求选取的人至少有名女生的概率.
参考公式:,其中.
参考数据:
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 5.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com