精英家教网 > 高中数学 > 题目详情

【题目】如图,在四面体ABCD中,截面PQMN是正方形,则下列命题中,正确的为________ (填序号).

ACBD;②AC∥截面PQMN;③ACBD;④异面直线PMBD所成的角为45°.

【答案】①②④

【解析】在四面体因为截面是正方形 平面 平面 平面因为平面 平面,可得 平面,同理可得 平面 是异面直线 所成的角,且为,由上面可知 综上可知:①②④都正确,故答案为①②④.

【方法点晴】本题主要考查异面直线所成的角以及线面平行的判断,属于难题.求异面直线所成的角主要方法有两种:一是向量法,根据几何体的特殊性质建立空间直角坐标系后,分别求出两直线的方向向量,再利用空间向量夹角的余弦公式求解;二是传统法,利用平行四边形、三角形中位线等方法找出两直线成的角,再利用平面几何性质求解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是菱形,,侧面是边长为2的等边三角形,点的中点,且平面平面

I求异面直线所成角的余弦值;

II若点在线段上移动,是否存在点使平面与平面所成的角为?若存在,指出点的位置,否则说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】实数满足不等式函数无极值点

1为假命题,为真命题,求实数的取值范围;

2已知为真命题,并记为,且,若的必要不充分条件,求正整数的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某农科所对冬季昼夜温差大小与反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了日至日的每天昼夜温差与实验室每天每颗种子中的发芽数,得到如下数据:

日期

12月1日

12月2日

12月3日

12月4日

12月5日

温度x

10

11

13

12

8

发芽数y

23

25

30

26

16

设农科所确定的研究方案是:先从这组数据中选取组,用剩下的组数据求线性回归方程,再对被选取的组数据进行检验

1求选取的组数据恰好是不相邻天数据的概率;

2若选取的是日与日的两组数据,请根据日与日的数据,求关于的线性回归方程

3若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过颗,则认为得到的线性回归方程是可靠的,试问2中所得的线性回归方程是否可靠?

注:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某生态园将一三角形地块的一角开辟为水果园种植桃树,已知角,的长度均大于米,现在边界处建围墙,在处围竹篱笆

1若围墙 长度为米,如何围可使得三角形地块的面积最大?

2已知段围墙高米,段围墙高米,造价均为每平方米若围围墙用了元,问如何围可使竹篱笆用料最省?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面,底面是直角梯形,,上的点.

(1)求证: 平面平面

(2)若的中点,且二面角的余弦值为,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为正方形,点是棱的中点,,平面平面

(Ⅰ)求证://平面

(Ⅱ)求证:平面

(Ⅲ) 设,试判断平面⊥平面能否成立;若成立,写出的一个值(只需写出结论).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数在区间上, 均可为一个三角形的三边长,则称函数三角形函数.已知函数在区间上是三角形函数,则实数的取值范围为( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学有一调查小组为了解本校学生假期中白天在家时间的情况,从全校学生中抽取人,统计他们平均每天在家的时间在家时间在小时以上的就认为具有属性,否则就认为不具有属性

具有属性

不具有属性

总计

男生

20

50

70

女生

10

40

50

总计

30

90

120

1请根据上述表格中的统计数据填写下面列联表,并通过计算判断能否在犯错误的概率不超过

的前提下认为是否具有属性与性别有关?

2采用分层抽样的方法从具有属性的学生里抽取一个人的样本,其中男生和女生各多少人?

人中随机选取人做进一步的调查,求选取的人至少有名女生的概率.

参考公式:,其中.

参考数据:

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

5.635

7.879

10.828

查看答案和解析>>

同步练习册答案