精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,底面,底面是直角梯形,,上的点.

(1)求证: 平面平面

(2)若的中点,且二面角的余弦值为,求直线与平面所成角的正弦值.

【答案】(1)证明见解析(2).

【解析】

试题分析:(1)由平面,得到,在利用勾股定理,得到,即可利用线面垂直的判定定理,证得平面,即可证明结论;(2)以为原点,建立空间直角坐标系,得到平面和平面的一个法向量,利用向量的运算,即可求解直线与平面所成角的正弦值.

试题解析:(1)证明:平面平面,

.

平面平面

平面平面.

(2)以为原点,建立空间直角坐标系如图所示,

,设

为面的法向量.

为面的法向量.

,则

依题意,,则,于是.

设直线与平面所成角为,则

即直线与平面所成角的正弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(必须列式,不能只写答案,答案用数字表示)有4个不同的球,四个不同的盒子,把球全部放入盒内.

(1)求共有多少种放法;

(2)求恰有一个盒子不放球,有多少种放法;

(3)求恰有两个盒内不放球,有多少种放法;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥PABCD中,四边形ABCD是矩形,侧面PAD⊥底面ABCD,若点EF分别是PCBD的中点。

1)求证:EF∥平面PAD

2)求证:平面PAD⊥平面PCD

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某海域有两个岛屿,岛在岛正东4海里处,经多年观察研究发现,某种鱼群洄游的路线是曲线,曾有渔船在距岛、岛距离和为8海里处发出过鱼群。以所在直线为轴,的垂直平分线为轴建立平面直角坐标系

1求曲线的标准方程;

2某日,研究人员在两岛同时用声纳探测仪发出不同频率的探测信号传播速度相同两岛收到鱼群在处反射信号的时间比为,问你能否确定处的位置即点的坐标

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四面体ABCD中,截面PQMN是正方形,则下列命题中,正确的为________ (填序号).

ACBD;②AC∥截面PQMN;③ACBD;④异面直线PMBD所成的角为45°.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系曲线与直线)交于两点

(1)当分别求在点处的切线方程

(2)轴上是否存在点使得当变动时总有说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆)的离心率为右焦点为斜率为1的直线与椭圆交于两点为底边作等腰三角形顶点为

(1)求椭圆的方程

(2)求的面积

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆经过点,圆的圆心在圆的内部,且直线被圆所截得的弦长为.为圆上异于的任意一点,直线轴交于点,直线轴交于点.

1)求圆的方程;

2)求证: 为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为奇函数

(1)比较的大小,并说明理由.(提示:

(2)若,且恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案