精英家教网 > 高中数学 > 题目详情
在等差数列{an}中,若a4+a6+a8+a10+a12=120,求a9-
1
3
a11的值.
考点:等差数列的性质
专题:计算题,等差数列与等比数列
分析:由等差数列的性质可知,项数之和相等的两项之和相等且等于项数之和一半的项,把已知条件化简后,即可求出a8的值,然后再由等差数列的通项公式化简要求的式子为
2
3
a8,即可求出所求式子的值.
解答: 解:由a4+a6+a8+a10+a12=(a4+a12)+(a6+a10)+a8=5a8=120,解得a8=24.
∴a9-
1
3
a11=(a1+8d)-
a1+10d
3
=
2
3
a8=16.
点评:此题主要考查学生灵活运用等差数列的性质化简求值,等差数列的通项公式的应用,是一道中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)是R上的偶函数,且x≥0,f(x)=2x-2•
x
,又a是函数g(x)=ln(x+1)-
2
x
的正零点,则f(-2),f(a),f(1.5)的大小关系是(  )
A、f(1.5)<f(a)<f(-2)
B、f(-2)<f(1.5)<f(a)
C、f(a)<f(1.5)<f(-2)
D、f(1.5)<f(-2)<f(a)

查看答案和解析>>

科目:高中数学 来源: 题型:

将曲线ρcosθ+2ρsinθ-1=0的极坐标方程化为直角坐标方程为(  )
A、y+2x-1=0
B、x+2y-1=0
C、x2+2y2-1=0
D、2y2+x2-1=0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x+
1
4
,数列{an}满足an+1=f(an),且f(a1)=0,
(1)求a1的值;
(2)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

解关于x的不等式:22x-(λ+1)•2x+λ<0 (λ∈R+).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥S-ABCD中,底面ABCD是直角梯形,侧棱面SA⊥面ABCD,AB垂直于AD和BC,CA=AB=BC=2,AD=1,M是棱SB的中点
(1)求证:AM∥面SCD;
(2)求证MD⊥SB;
(3)求三棱锥S-AMD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面四边形ABCD中,AB=BC=CD=a,∠B=90°,∠C=135°沿对角AC将四边形折成直二面角,求:二面角B-AD-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

设A∩M=B∩M=A∩B,A∪B∪M=A∪B,求证:M=A∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆方程为
y2
a2
+
x2
b2
=1(a>b>0),长轴两端点为A,B,短轴右端点为C.
(Ⅰ)若椭圆的焦距为4
2
,点M在椭圆上运动,且△ABM的最大面积为3,求该椭圆方程;
(Ⅱ)对于(Ⅰ)中的椭圆,作以C为直角顶点的内接于椭圆的等腰直角三角形CDE,设直线CE的斜率为k(k<0),求k的值.

查看答案和解析>>

同步练习册答案