精英家教网 > 高中数学 > 题目详情
8.已知命题p:?x0∈R,ax${\;}_{0}^{2}$+2ax0+1≤0.若命题¬p是真命题,则实数a的取值范围是[0,1).

分析 根据特称命题的否定是全称命题求出命题的否定,然后根据命题为真命题,结合一元二次不等式恒成立问题进行求解即可.

解答 解:∵命题p:?x0∈R,ax${\;}_{0}^{2}$+2ax0+1≤0.
∴¬p:?x∈R,ax2+2ax+1>0,
∵命题¬p是真命题,
∴当a=0时,不等式等价为1>0,满足条件.
当a≠0,要使不等式恒成立,
则满足$\left\{\begin{array}{l}{a>0}\\{△=4{a}^{2}-4a<0}\end{array}\right.$,即$\left\{\begin{array}{l}{a>0}\\{0<a<1}\end{array}\right.$,得0<a<1,
综上0≤a<1,
故答案为:[0,1).

点评 本题主要考查命题真假的应用,根据特称命题的否定是全称命题求出命题的否定,结合命题为真命题建立不等式关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.过点P(3,4)的圆x2+y2=25的切线方程为3x+4y-25=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.正四棱柱的底面边长为2,侧棱长为3,在此棱柱内放入一个半径为1的小球,当小球在棱柱内部自由运动时,则在棱柱内部小球所不能到达的空间的体积为24-$\frac{7π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.用斜二测画法得到某平面图形M的直观图是边长为1的正方形,则平面图形M的面积为(  )
A.2$\sqrt{2}$B.$\sqrt{2}$C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=lnx-(1+a)x-1,g(x)=-$\frac{lnx}{x}$-a(x+1),其中a∈R
(1)若函数f(x)在其定义域上不是单调函数,求实数a的取值范围
(2)如果函数p(x),q(x)在公共定义域D上满足p(x)<q(x),那么就称p(x)为q(x)的“底下函数”.证明:当a<1时,f(x)为g(x)的“底下函数”

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在△ABC中,内角A,B,C所对的边分别为a,b,c,且a,b,c成等比数列,若sinAsinC+sin2C-sin2A=$\frac{1}{2}$sinBsinC,则sinA=(  )
A.$\frac{1}{4}$B.$\frac{3}{4}$C.$\frac{{\sqrt{11}}}{4}$D.$\frac{{\sqrt{15}}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知定义在R上的函数f(x),f(x)+x•f′(x)<0,若a<b,则一定有(  )
A.af(a)<bf(b)B.af(b)<bf(a)C.af(a)>bf(b)D.af(b)>bf(a)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若两圆x2+y2=1和(x+4)2+(y-a)2=25有三条公切线,则常数a=±2$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.$\overline{z}$为复数z的共轭复数,i为虚数单位,且i•$\overline{z}$=1-i,则复数z的虚部为(  )
A.-iB.-1C.iD.1

查看答案和解析>>

同步练习册答案