精英家教网 > 高中数学 > 题目详情
13.在△ABC中,内角A,B,C所对的边分别为a,b,c,且a,b,c成等比数列,若sinAsinC+sin2C-sin2A=$\frac{1}{2}$sinBsinC,则sinA=(  )
A.$\frac{1}{4}$B.$\frac{3}{4}$C.$\frac{{\sqrt{11}}}{4}$D.$\frac{{\sqrt{15}}}{4}$

分析 利用正弦定理以及余弦定理结合等比数列,求解A的余弦函数,正弦函数值即可.

解答 解:由$sinAsinC+{sin^2}C-{sin^2}A=\frac{1}{2}sinBsinC$得$ac+{c^2}-{a^2}=\frac{1}{2}bc$,
由a,b,c成等比数列得ac=b2,即为${b^2}+{c^2}-{a^2}=\frac{1}{2}bc$,
所以$cosA=\frac{1}{4}$,即$sinA=\frac{{\sqrt{15}}}{4}$,
故选:D.

点评 本题考查正弦定理、余弦定理以及等比数列的知识,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.求由曲线f(x)=-x2-2x+3与x轴围成的封闭区域的面积.(注意:要求画图)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.实数m分别为何值时,复数z=2m2+m-3+(m2-3m-18)i是:
(1)实数;
(2)虚数;
(3)纯虚数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.等边三角形的边长为a,它绕其一边所在的直线旋转一周,则所得旋转体的体积为$\frac{π{a}^{3}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知命题p:?x0∈R,ax${\;}_{0}^{2}$+2ax0+1≤0.若命题¬p是真命题,则实数a的取值范围是[0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知α是第一象限角,那么$\frac{α}{2}$是第一或三象限角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图所示,经过村庄A有两条夹角为60°的公路AB,AC,根据规划拟在两条公路之间的区域内建一工厂P,分别在两条公路边上建两个仓库M,N(异于村庄A),要求PM=PN=MN=2(单位:千米).
(1)若△AMN的外接圆面积为S,求S的值;
(2)如何设计,使得工厂产生的噪声对居民的影响最小(即工厂与村庄的距离最远).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知a>0,求证:$\sqrt{a+5}$-$\sqrt{a+3}$>$\sqrt{a+6}$-$\sqrt{a+4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在四棱锥S-ABCD中,AB⊥AD,AB∥CD,CD=3AB,平面SAD⊥平面ABCD,M是线段AD上一点,AM=AB,DM=DC,SM⊥AD.
(Ⅰ)证明:BM⊥平面SMC;
(Ⅱ)若SB与平面ABCD所成角为$\frac{π}{4}$,N为棱SC上的动点,当二面角S-BM-N为$\frac{π}{4}$时,求$\frac{SN}{NC}$的值.

查看答案和解析>>

同步练习册答案