精英家教网 > 高中数学 > 题目详情
1.在△ABC中,已知A=45°,B=105°,则$\frac{a}{c}$的值为$\sqrt{2}$.

分析 由题意和内角定理求出角C,根据正弦定理求出$\frac{a}{c}$的值.

解答 解:在△ABC中,∵A=45°,B=105°,∴C=180°-A-B=30°,
由正弦定理得$\frac{a}{sinA}=\frac{c}{sinC}$,
则$\frac{a}{c}=\frac{sinA}{sinC}$=$\frac{\frac{\sqrt{2}}{2}}{\frac{1}{2}}$=$\sqrt{2}$,
故答案为:$\sqrt{2}$.

点评 本题考查正弦定理的简单应用,以及内角和定理,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=ax2+xlnx(a∈R)的图象在点(1,f(1))处的切线与直线x+3y=0垂直.
(Ⅰ)求实数a的值;
(Ⅱ)若存在k∈Z,使得f(x)>k恒成立,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.抛物线y2=2px(p>0)上一点M(2,m)到焦点的距离为3,则p=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点为F(1,0),且过点($\frac{\sqrt{6}}{2}$,$\frac{1}{2}$).过F作直线l与椭圆C交于不同的两点A,B,设$\overrightarrow{FA}$=λ$\overrightarrow{FB}$,λ∈[-2,-1],T(2,0)
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)求|$\overrightarrow{TA}$+$\overrightarrow{TB}$|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设x1、x2分别是关于x的方程x2+mx+m2-m=0的两个不相等的实数根,那么过两点A(x1,x12),B(x2,x22)的直线与圆(x-1)2+(y+1)2=1的位置关系是(  )
A.相离B.相切C.相交D.随m的变化而变化

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=cos2xcosφ-sin2xsinφ(0<φ<$\frac{π}{2}$)的图象的一个对称中心为($\frac{π}{6}$,0),则下列说法不正确的是(  )
A.直线x=$\frac{5}{12}$π是函数f(x)的图象的一条对称轴
B.函数f(x)在[0,$\frac{π}{6}$]上单调递减
C.函数f(x)的图象向右平移$\frac{π}{6}$个单位可得到y=cos2x的图象
D.函数f(x)在[0,$\frac{π}{2}$]上的最小值为-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆C:$\frac{{x}^{2}}{4}$+y2=1,点M(x0,y0)是椭圆C上的一点,圆M(x-x02+(y-y02=r2
(1)若圆M与x轴相切于椭圆C的右焦点,求圆M的方程;
(2)从原点O向圆M:(x-x02+(y-y02=$\frac{4}{5}$作两条切线与椭圆C交于P,Q两点(P,Q不在坐标轴上),设OP,OQ的斜率分别为k1,k2
①试问k1,k2是否为定值?若是,求出这个定值;若不是说明理由;
②求|OP|•|OQ|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0),其离心率与双曲线$\frac{x^2}{3}-{y^2}$=1的离心率互为倒数,而直线x+y=$\sqrt{3}$过椭圆C的一个焦点.
(I)求椭圆C的方程;
(Ⅱ)如图,以椭圆C的左顶点T为圆心作圆T,设圆T与椭圆C交于两点M,N,求$\overrightarrow{{T}{M}}•\overrightarrow{{T}{N}}$的最小值,并求出此时圆T的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知sin($\frac{π}{3}$-θ)=$\frac{1}{2}$,则cos($\frac{π}{6}$+θ)=(  )
A.$-\frac{{\sqrt{3}}}{2}$B.$-\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

同步练习册答案