精英家教网 > 高中数学 > 题目详情
9.如图,四面体ABCD中,AD⊥平面ABC,AB⊥BC,E,F分别为AC,BD的中点,AB=AD=2,∠BAC=60°.
(1)求证:CD⊥AF;
(2)求三棱锥E-BCD的体积.

分析 (1)证明AD⊥BC,AB⊥BC,推出BC⊥平面ABD,得到BC⊥AF,AF⊥BD,证明AF⊥平面BCD,推出AF⊥CD.
(2)求出E到平面BCD的距离为$\frac{1}{2}$$AF=\frac{\sqrt{2}}{2}$,S△BCD,然后求解体积.

解答 解:(1)证明:∵AD⊥平面ABC,∴AD⊥BC,
∵AB⊥BC,AB∩AD=A,
∴BC⊥平面ABD,∴BC⊥AF,
∵AB=AD,F为BD的中点,AF⊥BD又BC∩BD=B,
所以AF⊥平面BCD,
所以AF⊥CD
(2)由(1)知$AF=\sqrt{2}$,E到平面BCD的距离为$\frac{1}{2}$$AF=\frac{\sqrt{2}}{2}$,
又BC=2$\sqrt{3}$,BD=$2\sqrt{2}$  所以${S}_{△BCD}=\frac{1}{2}BC•BD=2\sqrt{6}$,
所以${V_{E-BCD}}=\frac{1}{3}×2\sqrt{6}×\frac{{\sqrt{2}}}{2}=\frac{{2\sqrt{3}}}{3}$.

点评 本题考查几何体的体积以及直线与平面垂直的判定定理以及性质定理的应用,考查计算能力以及逻辑推理能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.“a>b>0,c>d>0”是“ac>bd>0”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在△ABC中,角A,B,C所对的边分别为a,b,c,已知a=2$\sqrt{3}$,c=2$\sqrt{2}$,1+$\frac{tanA}{tanB}$=$\frac{2c}{b}$.则∠C=(  )
A.30°B.135°C.45°或135°D.45°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.函数f(x)=$\left\{\begin{array}{l}aln(x+1),x≥0\\ \frac{1}{3}{x^3}-ax,x<0\end{array}$,g(x)=ex-1.
(Ⅰ)当a>0时,求函数f(x)的单调区间和极大值;
(Ⅱ)当a∈R时,讨论方程f(x)=g(x)解得个数;
(Ⅲ)求证:$\frac{1095}{1000}$<$\root{10}{e}$<$\frac{3000}{2699}$(参考数据:ln1.1≈0.0953).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知cosα=$\frac{4}{5}$,α∈(-$\frac{π}{2}$,0),则tan($\frac{π}{4}$+$\frac{α}{2}$)的值是(  )
A.2B.$\frac{2}{5}$C.-2D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=$\sqrt{3}$sin(π-ωx)sin($\frac{π}{2}$+ωx)+cos2ωx-$\frac{1}{2}$,ω>0,其图象上相邻三个最值点构成的三角形的面积为π.
(1)求函数f(x)的最小正周期以及单调递增区间;
(2)设△ABC的内角A满足f(A)=1且$\overrightarrow{AB}$•$\overrightarrow{AC}$=$\sqrt{3}$,求边BC的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.数列{an}满足2an=an-1+an+1(n≥2),且a1+a3+a5=9,a3+a5+a7=15则a3+a4+a5=(  )
A.9B.10C.11D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设函数f(x)=sin(ωx+φ)(ω>0,-π<φ<0)的最小正周期是π,其图象的一条对称轴是直线x=$\frac{π}{8}$,又锐角三角形ABC中,满足f(C)=-$\frac{{\sqrt{2}}}{2}$
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)若tanA-$\frac{1}{sin2A}$=tanB,求角A.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知实数a,b,c满足不等式0<a<b<c<1,且M=2a,N=5-b,P=$(\frac{1}{7}{)^c}$,则M、N、P的大小关系为(  )
A.M>N>PB.P<M<NC.N>P>MD.P>N>M

查看答案和解析>>

同步练习册答案