精英家教网 > 高中数学 > 题目详情
5.已知F1是双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左焦点,点B的坐标为(0,b),直线F1B与双曲线C的两条渐近线分别交于P,Q两点,若4$\overrightarrow{P{F}_{1}}$=$\overrightarrow{QP}$,则双曲线C的离心率为$\frac{3}{2}$.

分析 求出P,Q的坐标,利用$\overrightarrow{QP}$=4$\overrightarrow{P{F}_{1}}$,建立方程向量坐标关系,进行求解即可求出双曲线C的离心率.

解答 解:直线PQ经过B(0,b),F1(-c,0),则kPQ=$\frac{b}{c}$.
∴直线PQ为:y=$\frac{b}{c}$(x+c),与y=$\frac{b}{a}$x.联立得:Q($\frac{ac}{c-a}$,$\frac{bc}{c-a}$);
与y=-$\frac{b}{a}$x.联立得:P(-$\frac{ac}{c+a}$,$\frac{bc}{c+a}$).
∴$\overrightarrow{P{F}_{1}}$=(-c+$\frac{ac}{c+a}$,-$\frac{bc}{a+c}$),$\overrightarrow{QP}$=(-$\frac{ac}{c+a}$-$\frac{ac}{c-a}$,$\frac{bc}{a+c}-\frac{bc}{c-a}$)
∵4$\overrightarrow{P{F}_{1}}$=$\overrightarrow{QP}$,
∴横坐标满足-$\frac{ac}{c+a}$-$\frac{ac}{c-a}$=4(-c+$\frac{ac}{c+a}$),
即$\frac{-2a{c}^{2}}{(c+a)(c-a)}$=$\frac{-4{c}^{2}}{c+a}$,
即$\frac{a}{c-a}$=2,
则a=2c-2a,
则2c=3a,
∴e=$\frac{c}{a}$=$\frac{3}{2}$.
故答案为:$\frac{3}{2}$

点评 本题主要考查双曲线的离心率的计算,根据条件求出直线方程,联立方程组求出交点坐标,利用向量关系建立a,c的方程是解决本题的关键.考查学生的计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.在△ABC中,a=2,A=$\frac{π}{4}$,若此三角形有两解,则b的取值范围是(2,2$\sqrt{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.根据下列条件分别写出直线的方程化为一般式方程:
(1)斜率为0,在y轴上的截距为2;
(2)经过A(-2,1),B(1,0)两点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知F1,F2是双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的左、右焦点,直线y=a与双曲线两条渐近线的左、右交点分别为A,B,若四边形ABF2F1的面积为5ab,则双曲线的离心率为(  )
A.$\frac{{2\sqrt{3}}}{3}$B.$\sqrt{2}$C.$\sqrt{3}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知点F1(-5,0),F2(5,0),动点M满足|MF1|-|MF2|=8,则动点M的轨迹方程是(  )
A.$\frac{x^2}{16}-\frac{y^2}{9}$=1(x>0)B.$\frac{x^2}{16}-\frac{y^2}{9}$=1C.$\frac{x^2}{16}-\frac{y^2}{9}$=1(x<0)D.$\frac{x^2}{25}+\frac{y^2}{9}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.双曲线x2-my2=1的一个焦点坐标为(-$\sqrt{5}$,0),则双曲线的渐近线方程为y=±2x.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图,在菱形ABCD中,AB=2,∠DAB=60°,E为CD的中点,则$\overrightarrow{AD}$•$\overrightarrow{AE}$的值是(  )
A.$\sqrt{7}$B.5C.$\sqrt{21}$D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图所示,当输入a,b分别为2,3时,最后输出的m的值是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示.
(Ⅰ)写出函数f(x)的最小正周期T及ω、φ的值;
(Ⅱ)求函数f(x)在区间[-$\frac{π}{4}$,$\frac{π}{4}$]上的最大值与最小值.

查看答案和解析>>

同步练习册答案