精英家教网 > 高中数学 > 题目详情
16.根据下列条件分别写出直线的方程化为一般式方程:
(1)斜率为0,在y轴上的截距为2;
(2)经过A(-2,1),B(1,0)两点.

分析 (1)写出斜截式方程,再化为一般式方程;(2)写出两点式方程,再化为一般式方程.

解答 解:(1)直线的斜截式方程为y=2.化为一般式方程为y-2=0.
(2)直线的两点式方程为$\frac{y-0}{1-0}=\frac{x-1}{-2-1}$,化为一般式方程为x+3y-1=0.

点评 本题考查了直线与方程,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知2sinα=1+cosα,则tan$\frac{α}{2}$=$±\frac{1}{2}$或无解.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知直线y=x-2与圆x2+y2=4交于两点M和N,O是坐标原点,则$\overrightarrow{OM}$$•\overrightarrow{ON}$=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.下列程序运行后,输出的前4个数的和是25.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=sin2xcos2x+cos22x,则函数f(x)的最大值为$\frac{\sqrt{2}+1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知实数1,m,4构成一个等比数列,则圆锥曲线$\frac{{x}^{2}}{m}$+y2=1的离心率为(  )
A.$\frac{\sqrt{2}}{2}$B.$\sqrt{3}$C.$\frac{\sqrt{2}}{2}$或$\sqrt{3}$D.$\frac{\sqrt{2}}{2}$或$\frac{\sqrt{6}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知不等式ax2+bx+2>0的解集为{x|-1<x<2},求不等式2x2+bx+a≤0的解集[-1,$\frac{1}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知F1是双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左焦点,点B的坐标为(0,b),直线F1B与双曲线C的两条渐近线分别交于P,Q两点,若4$\overrightarrow{P{F}_{1}}$=$\overrightarrow{QP}$,则双曲线C的离心率为$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知tanα=2,则sin2($\frac{π}{2}$+α)-sin(3π+α)cos(2π-α)=$\frac{3}{5}$.

查看答案和解析>>

同步练习册答案