分析 联立直线和圆的方程得到点M和点N的坐标,然后求解$\overrightarrow{OM}•\overrightarrow{ON}$即可.
解答 解:联立$\left\{\begin{array}{l}{y=x-2}\\{{x}^{2}+{y}^{2}=4}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=0}\\{y=-2}\end{array}\right.$或$\left\{\begin{array}{l}{x=2}\\{y=0}\end{array}\right.$,
则$\overrightarrow{OM}=(0,-2)$,$\overrightarrow{ON}=(2,0)$
所以$\overrightarrow{OM}•\overrightarrow{ON}$=0×2+(-2×0)=0,
故答案为:0.
点评 本题主要考察直线和圆相交时的交点坐标问题,属于基础题目,联立方程求解即可.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{7}$ | B. | 5 | C. | $\sqrt{21}$ | D. | 6 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com