精英家教网 > 高中数学 > 题目详情
14.$\overrightarrow{AB}-\overrightarrow{AC}-\overrightarrow{DB}$=(  )
A.$\overrightarrow{AD}$B.$\overrightarrow{AC}$C.$\overrightarrow{CD}$D.$\overrightarrow{BD}$

分析 根据平面向量减法的三角形法则计算.

解答 解:$\overrightarrow{AB}-\overrightarrow{AC}-\overrightarrow{DB}$=$\overrightarrow{CB}-\overrightarrow{DB}$=$\overrightarrow{CB}+\overrightarrow{BD}=\overrightarrow{CD}$.
故选C.

点评 本题考查了平面向量线性运算的几何意义,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知M(x0,y0)是双曲线C:$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1上的一点,F1,F2是双曲线C的两个焦点,若$\overrightarrow{M{F}_{1}}$•$\overrightarrow{M{F}_{2}}$≤0,则M到坐标原点的距离|MO|的最大值为(  )
A.4B.5C.3D.2$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在△ABC中,A,B,C的对边分别为a,b,c,设M为BC的中点,若∠BAC=$\frac{π}{3}$,b=2,AM=$\frac{\sqrt{7}}{2}$,则△ABC的面积为$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数f(x)=sinωx(ω>0)在区间(0,$\frac{π}{3}$)上单调递增且图象过($\frac{2π}{3}$,0),则ω=$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图所示的是函数y=2sin(ωx+φ)(|φ|<$\frac{π}{2}$)的部分图象,那么(  )
A.ω=$\frac{10}{11}$,φ=$\frac{π}{6}$B.ω=$\frac{10}{11}$,φ=-$\frac{π}{6}$C.ω=2,φ=$\frac{π}{6}$D.ω=2,φ=-$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知双曲线C1:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率为$\sqrt{3}$,若抛物线C2:y2=2px(p>0)的焦点到双曲线C1的渐近线的距离为$\sqrt{2}$,则抛物线C2的方程为(  )
A.y2=2$\sqrt{3}$xB.y2=4$\sqrt{3}$xC.y2=4xD.y2=6x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知双曲线y2-4x2=16上一点M到一个焦点的距离等于2,则点M到另一个焦点的距离为10.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图的程序框图中输出S的结果是25,则菱形判断框内应填入的条件是(  )
A.i<9B.i≤9C.i>9D.i≥9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的一条渐近线的方程为y=-$\sqrt{2}$x,则该双曲线的离心率为(  )
A.$\frac{3}{2}$B.$\frac{{\sqrt{6}}}{2}$C.3D.$\sqrt{3}$

查看答案和解析>>

同步练习册答案