精英家教网 > 高中数学 > 题目详情
1.已知点A(1,4),B(3,2),C(1,1).
(Ⅰ)求过点C与直线AB平行的直线方程;
(Ⅱ)若线段AB的垂直平分线与x,y轴分别交于点M,N,求△OMN的面积.

分析 (Ⅰ)求出直线的斜率,结合直线平行的关系即可,求过点C与直线AB平行的直线方程;
(Ⅱ)根据直线垂直的斜率关系,求出斜率,结合三角形的面积公式进行求解即可.

解答 解:(Ⅰ)∵A(1,4)、B(3,2),
∴直线AB的斜率${k_{AB}}=\frac{4-2}{1-3}=-1$.(2分)
∴过点C与直线AB平行的直线方程为y-1=-(x-1),(4分)
即x+y-2=0.   (5分)
(Ⅱ)∵A(1,4)、B(3,2),
∴AB的中点坐标为(2,3).(6分)
又线段AB的垂直平分线的斜率为1,
∴线段AB的垂直平分线的方程为:y-3=1•(x-2)
即x-y+1=0.(8分)
∵M(-1,0),N(1,0),(10分)
∴${S_{△OMN}}=\frac{1}{2}|{OM}|•|{ON}|=\frac{1}{2}$.(12分)

点评 本题主要考查直线斜率公式的求解,以及直线平行和垂直的斜率关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.用1,2,3,4可组成每一位上的数字允许重复的三位数64(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用的旧墙需维修,可供利用的旧墙足够长),其他三面围墙要新建,在旧墙对面的新墙上要留一个宽2m的进出口,如图所示.已知旧墙的维修费用为45元/m,新墙的造价为180元/m.设利用旧墙的长度为x(单位:m),修建此矩形场地围墙的总费用为y(单位:元).
(1)将y表示为x的函数,并写出此函数的定义域;
(2)若要求用于维修旧墙的费用不得超过修建此矩形场地围墙的总费用的15%,试确定x,使修建此矩形场地围墙的总费用最小,并求出最小总费用.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知点P(x0,y0)为椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$上的任意一点(长轴的端点除外),F1、F2分别为左、右焦点,其中a,b为常数.

(1)若点P在椭圆的短轴端点位置时,△PF1F2为直角三角形,求椭圆的离心率.
(2)求证:直线$\frac{x_0}{a^2}x+\frac{y_0}{b^2}y=1$为椭圆在点P处的切线方程;
(3)过椭圆的右准线上任意一点R作椭圆的两条切线,切点分别为S、T.请判断直线ST是否经过定点?若经过定点,求出定点坐标,若不经过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=a(x-1)2+lnx,a∈R.
(Ⅰ)当$a=-\frac{1}{4}$时,求函数y=f(x)的单调区间;
(Ⅱ)$a=\frac{1}{2}$时,令$h(x)=f(x)-3lnx+x-\frac{1}{2}$,求h(x)在[1,e]的最大值和最小值;
(Ⅲ)当x∈[1,+∞)时,函数y=f(x)图象上的点都在不等式组$\left\{\begin{array}{l}x≥1\\ y≤x-1\end{array}\right.$所表示的区域内,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=2sinxcosx+2cos2x-1.
(Ⅰ)求$f(\frac{π}{8})$的值;
(Ⅱ)求函数f(x)的单调区间;
(Ⅲ)若关于x的方程f(x)-a=0(a∈R)在区间$(0,\;\frac{π}{2})$内有两个不相等的实数根x1,x2,记t=acos(x1+x2),求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若实数x,y满足不等式组$\left\{\begin{array}{l}{y≥2x-1}\\{y≤x+1}\end{array}\right.$,则z=x+3y的最大值是(  )
A.-3B.$\frac{1}{3}$C.11D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有(  )种.
A.48B.60C.72D.96

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知x,y∈R,定义运算?:x?y=x(l-y).设函数f(x)=(x-a)?(x+a),a为实数.
(1)若f(x)<1对一切实数x都成立,求a的取值范围;
(2)解关于x的不等式f(x)>0.

查看答案和解析>>

同步练习册答案