精英家教网 > 高中数学 > 题目详情
10.在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有(  )种.
A.48B.60C.72D.96

分析 分类讨论,一、二、三等奖,三个人获得;一、二、三等奖,有1人获得2张,1人获得1张.

解答 解:分类讨论,一、二、三等奖,三个人获得,共有A43=24种;
一、二、三等奖,有1人获得2张,1人获得1张,共有C32A42=36种,
共有24+36=60种.
故选:B.

点评 本题考查排列、组合及简单计数问题,考查学生的计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.用一个平面截其球体得到直径为4的圆,且球心到这个平面的距离是2,则该球的表面积是32π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知点A(1,4),B(3,2),C(1,1).
(Ⅰ)求过点C与直线AB平行的直线方程;
(Ⅱ)若线段AB的垂直平分线与x,y轴分别交于点M,N,求△OMN的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设抛物线C:y2=x与直线l交于A,B两点(异于原点O),以AB为直径的圆恰好经过原点O.
(Ⅰ)求证:直线l过定点.
(Ⅱ)求△OAB面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.随机询问某大学40名不同性别的大学生在购买食物时是否读营养说明,得到如下2×2列联表:
读营养说明不读营养说明合计
16420
81220
合计241640
(1)根据以上列联表进行独立性检验,能否在犯错误的概率不超过0.01的前提下认为“性别与是否读营养说明之间有关系”?
(2)从被询问的16名不读营养说明的大学生中,随机抽取2名学生,求抽到男生人数ξ的分布列及其数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知直角三角形的两直角边长的和为4,则此直角三角形的面积满足(  )
A.最大值2B.最大值4C.最小值2D.最小值4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.校本课程是由学校自主开发的课程,与必修课程一起构成学校课程体系.某校开设校本课程“数学史选讲”,为了了解该课程学生的喜好程度是否跟性别有关,随机调查了50名同学,结果如下:25名男生中有10名喜欢,15名不喜欢;25名女生中有20名喜欢,5名不喜欢.
(Ⅰ)根据以上数据完成2×2列联表
性别
喜好
合计
喜欢102030
  不喜欢15520
合计252550
(Ⅱ)有多大的把握认为该课程的喜好程度与学生的性别有关?(参考公式与数值附后)
参考公式与数值:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k)0.2500.1500.1000.0500.0250.0100.0050.001
k1.3232.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=3-2log2x,g(x)=log2x.
(1)若x∈[1,8],求函数h(x)=(f(x)+1)g(x)的值域;
(2)求函数M(x)=$\left\{\begin{array}{l}{g(x),}&{f(x)≥g(x)}\\{f(x),}&{f(x)<g(x)}\end{array}\right.$的最大值;
(3)若不等式f(x2)f($\sqrt{x}$)≥kg(x)对任意x∈[1,8]恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在△ABC中,角A,B,C的对边分别是a,b,c,已知A=$\frac{π}{3}$,b=1,△ABC的外接圆半径为1,则S△ABC=$\frac{{\sqrt{3}}}{2}$.

查看答案和解析>>

同步练习册答案