精英家教网 > 高中数学 > 题目详情
2.校本课程是由学校自主开发的课程,与必修课程一起构成学校课程体系.某校开设校本课程“数学史选讲”,为了了解该课程学生的喜好程度是否跟性别有关,随机调查了50名同学,结果如下:25名男生中有10名喜欢,15名不喜欢;25名女生中有20名喜欢,5名不喜欢.
(Ⅰ)根据以上数据完成2×2列联表
性别
喜好
合计
喜欢102030
  不喜欢15520
合计252550
(Ⅱ)有多大的把握认为该课程的喜好程度与学生的性别有关?(参考公式与数值附后)
参考公式与数值:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k)0.2500.1500.1000.0500.0250.0100.0050.001
k1.3232.0722.7063.8415.0246.6357.87910.828

分析 (Ⅰ)根据25名男生中有10名喜欢,15名不喜欢;25名女生中有20名喜欢,5名不喜欢,即可得到列联表;
(Ⅱ)根据所给的表格中的数据,代入求观测值的公式,求出观测值同临界值进行比较,得到有99.5%的把握认为该课程喜好程度与学生的性别有关.

解答 解:(I)

性别
喜好
合计
喜欢102030
不喜欢15520
合计252550
…(5分)
(II)${k^2}=\frac{{50{{(20×15-10×5)}^2}}}{25×25×20×30}=\frac{25}{3}≈8.333>7.879$…(8分)
P(k2≥7.879)≈0.005…(10分)
∴我们有99.5%的把握认为该课程喜好程度与学生的性别有关.…(12分)

点评 本题主要考查统计学的独立性案例分析方法等基本知识,考查数据处理能力及独立性检验的思想,培养应用意识.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用的旧墙需维修,可供利用的旧墙足够长),其他三面围墙要新建,在旧墙对面的新墙上要留一个宽2m的进出口,如图所示.已知旧墙的维修费用为45元/m,新墙的造价为180元/m.设利用旧墙的长度为x(单位:m),修建此矩形场地围墙的总费用为y(单位:元).
(1)将y表示为x的函数,并写出此函数的定义域;
(2)若要求用于维修旧墙的费用不得超过修建此矩形场地围墙的总费用的15%,试确定x,使修建此矩形场地围墙的总费用最小,并求出最小总费用.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若实数x,y满足不等式组$\left\{\begin{array}{l}{y≥2x-1}\\{y≤x+1}\end{array}\right.$,则z=x+3y的最大值是(  )
A.-3B.$\frac{1}{3}$C.11D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有(  )种.
A.48B.60C.72D.96

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图程序框图,若输入a=-9,则输出的结果是(  )
A.-9B.-3C.3D.是负数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设随机变量X的概率分布如表所示:
X12345
P $\frac{1}{5}$ $\frac{1}{5}$ $\frac{1}{5}$ $\frac{1}{5}$ $\frac{1}{5}$
则X的方差为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知向量$\overrightarrow{a}$=(2,2),$\overrightarrow{b}$=(-3,4),则$\overrightarrow{a}$•$\overrightarrow{b}$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知x,y∈R,定义运算?:x?y=x(l-y).设函数f(x)=(x-a)?(x+a),a为实数.
(1)若f(x)<1对一切实数x都成立,求a的取值范围;
(2)解关于x的不等式f(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列函数中偶函数的个数为(  )
y=cos2x,y=|sinx|,y=sinx•cosx,y=cos(x+$\frac{π}{3}$),y=tanx+1.
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案