·ÖÎö £¨1£©µ±µãPÔÚÍÖÔ²µÄ¶ÌÖá¶ËµãλÖÃʱ£¬¡÷PF1F2Ϊֱ½ÇÈý½ÇÐΣ¬Çó³öa£¬c¹ØÏµÊ½£¬µÃµ½ÀëÐÄÂÊ£®
£¨2£©µãP£¨x0£¬y0£©ÍƳö$\frac{x_0^2}{a^2}+\frac{y_0^2}{b^2}=1$£®°Ñ£¨x0£¬y0£©´úÈëÇÐÏß·½³Ì·½³ÌµÃ$\frac{x_0^2}{a^2}+\frac{y_0^2}{b^2}=1$£¬ÁªÁз½³Ì×é$\left\{{\begin{array}{l}{\frac{x^2}{a^2}+\frac{y^2}{b^2}=1}\\{\frac{x_0}{a^2}x+\frac{y_0}{b^2}y=1}\end{array}}\right.$£¬Çó½â¼´¿É£®
£¨3£©ÓÉÌâ¿ÉÉèS£¨x1£¬y1£©¡¢T£¨x2£¬y2£©¡¢$R£¨\frac{a^2}{c}£¬{y_3}£©$£®µÃµ½ÇÐÏßSRµÄ·½³ÌΪ$\frac{x_1}{a^2}x+\frac{y_1}{b^2}y=1$£¬
ÇÐÏßTRµÄ·½³ÌΪ$\frac{x_2}{a^2}x+\frac{y_2}{b^2}y=1$£¬°Ñ$R£¨\frac{a^2}{c}£¬{y_3}£©$·Ö±ð´úÈëÁ½¸ö·½³Ì»¯¼ò£¬ÍƳöµãS£¨x1£¬y1£©¡¢T£¨x2£¬y2£©¡¢F2£¨c£¬0£©Èýµã¹²Ïߣ¬È»ºóÇó½â¶¨µã×ø±ê£®
½â´ð ½â£º¼Ç$c=\sqrt{{a^2}-{b^2}}$£®
£¨1£©µ±µãPÔÚÍÖÔ²µÄ¶ÌÖá¶ËµãλÖÃʱ£¬¡÷PF1F2Ϊֱ½ÇÈý½ÇÐΣ¬![]()
ÔòÓÐ$a=\sqrt{2}c$£¬µÃ$e=\frac{{\sqrt{2}}}{2}$£®
ËùÒÔ£¬´ËʱÍÖÔ²µÄÀëÐÄÂÊΪ$\frac{{\sqrt{2}}}{2}$¡4'
£¨2£©µãP£¨x0£¬y0£©ÔÚÍÖÔ²$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ÉÏ£¬µÃ$\frac{x_0^2}{a^2}+\frac{y_0^2}{b^2}=1$£®
°Ñ£¨x0£¬y0£©´úÈë·½³Ì$\frac{x_0}{a^2}x+\frac{y_0}{b^2}y=1$£¬µÃ$\frac{x_0^2}{a^2}+\frac{y_0^2}{b^2}=1$£¬
ËùÒÔµãP£¨x0£¬y0£©ÔÚÖ±Ïß$\frac{x_0}{a^2}x+\frac{y_0}{b^2}y=1$ÉÏ£¬¡6'
ÁªÁз½³Ì×é$\left\{{\begin{array}{l}{\frac{x^2}{a^2}+\frac{y^2}{b^2}=1}\\{\frac{x_0}{a^2}x+\frac{y_0}{b^2}y=1}\end{array}}\right.$£¬ÏûÈ¥y¿ÉµÃ${a^2}{x^2}-2{a^2}{x_0}x+{a^2}x_0^2=0$£¬
½âµÃx=x0£¬¼´·½³Ì×éÖ»ÓÐΨһ½â£®
ËùÒÔ£¬Ö±Ïß$\frac{x_0}{a^2}x+\frac{y_0}{b^2}y=1$ΪÍÖÔ²ÔÚµãP´¦µÄÇÐÏß·½³Ì¡10'
£¨3£©ÓÉÌâ¿ÉÉèS£¨x1£¬y1£©¡¢T£¨x2£¬y2£©¡¢$R£¨\frac{a^2}{c}£¬{y_3}£©$£®
ÓÉ£¨2£©½áÂÛ¿ÉÖª£¬ÇÐÏßSRµÄ·½³ÌΪ$\frac{x_1}{a^2}x+\frac{y_1}{b^2}y=1$¢Ù
ÇÐÏßTRµÄ·½³ÌΪ$\frac{x_2}{a^2}x+\frac{y_2}{b^2}y=1$¢Ú¡12'
°Ñ$R£¨\frac{a^2}{c}£¬{y_3}£©$·Ö±ð´úÈë·½³Ì¢Ù¡¢¢Ú£¬¿ÉµÃ$\frac{x_1}{c}+\frac{y_1}{b^2}{y_3}=1$¢Û![]()
ºÍ$\frac{x_2}{c}+\frac{y_2}{b^2}{y_3}=1$¢Ü
ÓÉ¢Û¡¢¢ÜÁ½Ê½£¬ÏûÈ¥y3£¬¿ÉµÃ£¨x1-c£©y2=£¨x2-c£©y1£¬
¼´ÓУ¨x1-c£©£¨y2-0£©=£¨x2-c£©£¨y1-0£©£¬
ËùÒÔ£¬µãS£¨x1£¬y1£©¡¢T£¨x2£¬y2£©¡¢F2£¨c£¬0£©Èýµã¹²Ïߣ¬
ËùÒÔ£¬Ö±ÏßST¾¹ý¶¨µã£¬¶¨µã×ø±êΪ${F_2}£¨\sqrt{{a^2}-{b^2}}£¬0£©$¡16'
µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ¼òµ¥ÐÔÖÊ£¬ÍÖÔ²µÄÇÐÏß·½³ÌµÄÓ¦Óã¬Ö±ÏßÓëÍÖÔ²µÄλÖùØÏµµÄ×ÛºÏÓ¦Ó㬿¼²éת»¯Ë¼ÏëÒÔ¼°¼ÆËãÄÜÁ¦£®
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | £¨1£©£¨3£© | B£® | £¨1£©£¨4£© | C£® | £¨2£©£¨3£© | D£® | £¨2£©£¨4£© |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com