9£®ÒÑÖªµãP£¨x0£¬y0£©ÎªÍÖÔ²$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨a£¾b£¾0£©$ÉϵÄÈÎÒâÒ»µã£¨³¤ÖáµÄ¶Ëµã³ýÍ⣩£¬F1¡¢F2·Ö±ðΪ×ó¡¢ÓÒ½¹µã£¬ÆäÖÐa£¬bΪ³£Êý£®

£¨1£©ÈôµãPÔÚÍÖÔ²µÄ¶ÌÖá¶ËµãλÖÃʱ£¬¡÷PF1F2Ϊֱ½ÇÈý½ÇÐΣ¬ÇóÍÖÔ²µÄÀëÐÄÂÊ£®
£¨2£©ÇóÖ¤£ºÖ±Ïß$\frac{x_0}{a^2}x+\frac{y_0}{b^2}y=1$ΪÍÖÔ²ÔÚµãP´¦µÄÇÐÏß·½³Ì£»
£¨3£©¹ýÍÖÔ²µÄÓÒ×¼ÏßÉÏÈÎÒâÒ»µãR×÷ÍÖÔ²µÄÁ½ÌõÇÐÏߣ¬Çеã·Ö±ðΪS¡¢T£®ÇëÅжÏÖ±ÏßSTÊÇ·ñ¾­¹ý¶¨µã£¿Èô¾­¹ý¶¨µã£¬Çó³ö¶¨µã×ø±ê£¬Èô²»¾­¹ý¶¨µã£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©µ±µãPÔÚÍÖÔ²µÄ¶ÌÖá¶ËµãλÖÃʱ£¬¡÷PF1F2Ϊֱ½ÇÈý½ÇÐΣ¬Çó³öa£¬c¹ØÏµÊ½£¬µÃµ½ÀëÐÄÂÊ£®
£¨2£©µãP£¨x0£¬y0£©ÍƳö$\frac{x_0^2}{a^2}+\frac{y_0^2}{b^2}=1$£®°Ñ£¨x0£¬y0£©´úÈëÇÐÏß·½³Ì·½³ÌµÃ$\frac{x_0^2}{a^2}+\frac{y_0^2}{b^2}=1$£¬ÁªÁз½³Ì×é$\left\{{\begin{array}{l}{\frac{x^2}{a^2}+\frac{y^2}{b^2}=1}\\{\frac{x_0}{a^2}x+\frac{y_0}{b^2}y=1}\end{array}}\right.$£¬Çó½â¼´¿É£®
£¨3£©ÓÉÌâ¿ÉÉèS£¨x1£¬y1£©¡¢T£¨x2£¬y2£©¡¢$R£¨\frac{a^2}{c}£¬{y_3}£©$£®µÃµ½ÇÐÏßSRµÄ·½³ÌΪ$\frac{x_1}{a^2}x+\frac{y_1}{b^2}y=1$£¬
ÇÐÏßTRµÄ·½³ÌΪ$\frac{x_2}{a^2}x+\frac{y_2}{b^2}y=1$£¬°Ñ$R£¨\frac{a^2}{c}£¬{y_3}£©$·Ö±ð´úÈëÁ½¸ö·½³Ì»¯¼ò£¬ÍƳöµãS£¨x1£¬y1£©¡¢T£¨x2£¬y2£©¡¢F2£¨c£¬0£©Èýµã¹²Ïߣ¬È»ºóÇó½â¶¨µã×ø±ê£®

½â´ð ½â£º¼Ç$c=\sqrt{{a^2}-{b^2}}$£®
£¨1£©µ±µãPÔÚÍÖÔ²µÄ¶ÌÖá¶ËµãλÖÃʱ£¬¡÷PF1F2Ϊֱ½ÇÈý½ÇÐΣ¬

ÔòÓÐ$a=\sqrt{2}c$£¬µÃ$e=\frac{{\sqrt{2}}}{2}$£®
ËùÒÔ£¬´ËʱÍÖÔ²µÄÀëÐÄÂÊΪ$\frac{{\sqrt{2}}}{2}$¡­4'
£¨2£©µãP£¨x0£¬y0£©ÔÚÍÖÔ²$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ÉÏ£¬µÃ$\frac{x_0^2}{a^2}+\frac{y_0^2}{b^2}=1$£®
°Ñ£¨x0£¬y0£©´úÈë·½³Ì$\frac{x_0}{a^2}x+\frac{y_0}{b^2}y=1$£¬µÃ$\frac{x_0^2}{a^2}+\frac{y_0^2}{b^2}=1$£¬
ËùÒÔµãP£¨x0£¬y0£©ÔÚÖ±Ïß$\frac{x_0}{a^2}x+\frac{y_0}{b^2}y=1$ÉÏ£¬¡­6'
ÁªÁз½³Ì×é$\left\{{\begin{array}{l}{\frac{x^2}{a^2}+\frac{y^2}{b^2}=1}\\{\frac{x_0}{a^2}x+\frac{y_0}{b^2}y=1}\end{array}}\right.$£¬ÏûÈ¥y¿ÉµÃ${a^2}{x^2}-2{a^2}{x_0}x+{a^2}x_0^2=0$£¬
½âµÃx=x0£¬¼´·½³Ì×éÖ»ÓÐΨһ½â£®
ËùÒÔ£¬Ö±Ïß$\frac{x_0}{a^2}x+\frac{y_0}{b^2}y=1$ΪÍÖÔ²ÔÚµãP´¦µÄÇÐÏß·½³Ì¡­10'
£¨3£©ÓÉÌâ¿ÉÉèS£¨x1£¬y1£©¡¢T£¨x2£¬y2£©¡¢$R£¨\frac{a^2}{c}£¬{y_3}£©$£®
ÓÉ£¨2£©½áÂÛ¿ÉÖª£¬ÇÐÏßSRµÄ·½³ÌΪ$\frac{x_1}{a^2}x+\frac{y_1}{b^2}y=1$¢Ù
ÇÐÏßTRµÄ·½³ÌΪ$\frac{x_2}{a^2}x+\frac{y_2}{b^2}y=1$¢Ú¡­12'
°Ñ$R£¨\frac{a^2}{c}£¬{y_3}£©$·Ö±ð´úÈë·½³Ì¢Ù¡¢¢Ú£¬¿ÉµÃ$\frac{x_1}{c}+\frac{y_1}{b^2}{y_3}=1$¢Û

ºÍ$\frac{x_2}{c}+\frac{y_2}{b^2}{y_3}=1$¢Ü
ÓÉ¢Û¡¢¢ÜÁ½Ê½£¬ÏûÈ¥y3£¬¿ÉµÃ£¨x1-c£©y2=£¨x2-c£©y1£¬
¼´ÓУ¨x1-c£©£¨y2-0£©=£¨x2-c£©£¨y1-0£©£¬
ËùÒÔ£¬µãS£¨x1£¬y1£©¡¢T£¨x2£¬y2£©¡¢F2£¨c£¬0£©Èýµã¹²Ïߣ¬
ËùÒÔ£¬Ö±ÏßST¾­¹ý¶¨µã£¬¶¨µã×ø±êΪ${F_2}£¨\sqrt{{a^2}-{b^2}}£¬0£©$¡­16'

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ¼òµ¥ÐÔÖÊ£¬ÍÖÔ²µÄÇÐÏß·½³ÌµÄÓ¦Óã¬Ö±ÏßÓëÍÖÔ²µÄλÖùØÏµµÄ×ÛºÏÓ¦Ó㬿¼²éת»¯Ë¼ÏëÒÔ¼°¼ÆËãÄÜÁ¦£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®ÏÂÁÐÃüÌ⣺
¢Ùsin2x=cosx£¬Ôòsinx=$\frac{1}{2}$£»
¢ÚÈô¹ØÓÚxµÄ·½³Ìax2+bx+c=0£¨a£¬b£¬c¡ÊR£©ÎÞÁ½¸ö²»ÏàµÈµÄʵ¸ù£¬Ôòac¡Ý0£»
¢ÛÈô·ÇÁãÏòÁ¿|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=|$\overrightarrow{a}$-$\overrightarrow{b}$|£¬Ôò$\overrightarrow{b}$Óë$\overrightarrow{a}$-$\overrightarrow{b}$µÄ¼Ð½ÇΪ60¡ã£»
¢ÜÈô¼¯ºÏA={x|x2+2x-3£¼0£¬x¡ÊR}£¬Ôò¼¯ºÏA¡ÉZµÄ×Ó¼¯¸öÊýΪ8£®
ÆäÖÐÕæÃüÌâΪ¢Ú¢Ü£®£¨ÌîÐòºÅ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®ÓÃÒ»¸öÆ½Ãæ½ØÆäÇòÌåµÃµ½Ö±¾¶Îª4µÄÔ²£¬ÇÒÇòÐĵ½Õâ¸öÆ½ÃæµÄ¾àÀëÊÇ2£¬Ôò¸ÃÇòµÄ±íÃæ»ýÊÇ32¦Ð£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®Èçͼ£¬ÔÚËÄÃæÌåA-BCDÖУ¬AD¡ÍÆ½ÃæBCD£¬BC¡ÍCD£®MÊÇADµÄÖе㣬PÊÇBMµÄÖе㣬µãQÔÚÏß¶ÎACÉÏ£¬ÇÒAQ=3QC£®
£¨1£©Ö¤Ã÷£ºBC¡ÍCM£»£¨2£©Ö¤Ã÷£ºPQ¡ÎÆ½ÃæBCD£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®ÒÑÖª$f£¨x£©=\left\{\begin{array}{l}{x^2}-4x+3£¬\;\;x¡Ü0\\-{x^2}-2x+3£¬\;\;x£¾0\end{array}\right.$£¬Èô¹ØÓÚxµÄ²»µÈʽf£¨x+a£©¡Ýf£¨2a-x£©ÔÚ[a£¬a+1]ÉϺã³ÉÁ¢£¬ÔòʵÊýaµÄ×î´óÖµÊÇ-2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÒÑÖªÃüÌâp£ºÈôx£¾y£¬Ôò-x£¼-y£»ÃüÌâq£ºÈôx£¼y£¬Ôòx2£¾y2£»ÔÚÏÂÁÐÃüÌâÖУº£¨1£©p¡Äq£»£¨2£©p¡Åq£»£¨3£©p¡Ä£¨©Vq£©£»£¨4£©£¨©Vp£©¡Åq£¬ÕæÃüÌâÊÇ£¨¡¡¡¡£©
A£®£¨1£©£¨3£©B£®£¨1£©£¨4£©C£®£¨2£©£¨3£©D£®£¨2£©£¨4£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÒÑÖªµãA£¨1£¬4£©£¬B£¨3£¬2£©£¬C£¨1£¬1£©£®
£¨¢ñ£©Çó¹ýµãCÓëÖ±ÏßABƽÐеÄÖ±Ïß·½³Ì£»
£¨¢ò£©ÈôÏß¶ÎABµÄ´¹Ö±Æ½·ÖÏßÓëx£¬yÖá·Ö±ð½»ÓÚµãM£¬N£¬Çó¡÷OMNµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÉèÅ×ÎïÏßC£ºy2=xÓëÖ±Ïßl½»ÓÚA£¬BÁ½µã£¨ÒìÓÚÔ­µãO£©£¬ÒÔABΪֱ¾¶µÄԲǡºÃ¾­¹ýÔ­µãO£®
£¨¢ñ£©ÇóÖ¤£ºÖ±Ïßl¹ý¶¨µã£®
£¨¢ò£©Çó¡÷OABÃæ»ýµÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÒÑÖªº¯Êýf£¨x£©=3-2log2x£¬g£¨x£©=log2x£®
£¨1£©Èôx¡Ê[1£¬8]£¬Çóº¯Êýh£¨x£©=£¨f£¨x£©+1£©g£¨x£©µÄÖµÓò£»
£¨2£©Çóº¯ÊýM£¨x£©=$\left\{\begin{array}{l}{g£¨x£©£¬}&{f£¨x£©¡Ýg£¨x£©}\\{f£¨x£©£¬}&{f£¨x£©£¼g£¨x£©}\end{array}\right.$µÄ×î´óÖµ£»
£¨3£©Èô²»µÈʽf£¨x2£©f£¨$\sqrt{x}$£©¡Ýkg£¨x£©¶ÔÈÎÒâx¡Ê[1£¬8]ºã³ÉÁ¢£¬ÇóʵÊýkµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸