精英家教网 > 高中数学 > 题目详情
已知在四棱锥中,底面是矩形,平面分别是的中点.

(1)求证:平面
(2)求二面角的余弦值.
(1)证明过程详见解析;(2).

试题分析:本题主要以四棱锥为几何背景,考查线面平行的判定和二面角的求法,可以运用传统几何法,也可以用空间向量方法求解,突出考查空间想象能力和计算能力.第一问,利用线面平行的判定定理,先找出面内的一条线,利用平行四边形证明,从而证明线面平行;第二问,用向量法解题,先建立直角坐标系,求出2个平面的法向量,再求夹角.
试题解析: (1)证明:取的中点,连结.
,且
,∴.
的中点,且
,∴四边形是平行四边形.
.
平面平面.
平面.(6分)
(2)解:以为原点,如图建立直角坐标系,则

设平面的法向量为
可得,令,则
易得平面的法向量可为

如图,易知二面角的余弦值等于,即为. (12分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥A-BCDE中,底面四边形BCDE是等腰梯形,BC∥DE, =45 ,O是BC的中点,AO= ,且BC=6,AD=AE=2CD=2 ,

(1)证明:AO⊥平面BCD;(2)求二面角A-CD-B的平面角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥A-BCD中,平行于BC的平面MNPQ分别交AB、AC、CD、BD于M、N、P、Q四点,且MN=PQ.

(1)求证:四边形为平行四边形;
(2)试在直线AC上找一点F,使得.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题13分)如图,棱锥的底面是矩形,⊥平面

(1)求证:⊥平面
(2)求二面角的大小;
(3)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分 )如图,在三棱柱中,所有的棱长都为2,.
  
(1)求证:
(2)当三棱柱的体积最大时,
求平面与平面所成的锐角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在平面几何里,有勾股定理:“设△ABC的两边AB,AC互相垂直,则AB2+AC2=BC2.”拓展到空间,类比平面几何的勾股定理,研究三棱锥的面面积与底面面积间的关系。可以得出的正确结论是:“设三棱锥A—BCD的三个侧面ABC、ACD、ADB两两相互垂直,则                                       ”.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

三棱柱中,所成角均为,且,则三棱锥的体积为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是两条不同直线,是两个不同平面,则下列命题错误的是(   )
A.若,则B.若,则
C.若,则D.若,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,正方体ABCDA1B1C1D1的棱长为4,M为BD1的中点,N在A1C1上,且|A1N|=3|NC1|,则MN的长为   .

查看答案和解析>>

同步练习册答案