分析 (1)由题意可得an+1=$\sqrt{{a_n}^2-2{a_n}+2}$+1,又a11=,可求得a2,再由a2的值求 a3,再由a3 的值求出a4的值,并猜想${a_n}=\sqrt{n-1}+1$.
(2)检验n=1时等式成立,假设n=k时命题成立,证明当n=k+1时命题也成立.
解答 解:(1)${a_2}=\sqrt{{a_1}^2-2{a_1}+2}+1$=2;${a_3}=\sqrt{{a_2}^2-2{a_2}+2}+1$=$\sqrt{2}+1$;${a_4}=\sqrt{{a_3}^2-2{a_3}+2}+1$=$\sqrt{3}+1$;猜想${a_n}=\sqrt{n-1}+1$;
(2)下面用数学归纳法证明:
①当n=1时 满足猜想;
②假设n=k时,${a_k}=\sqrt{k-1}+1$成立,
则${a_{k+1}}=\sqrt{{a_k}^2-2{a_k}+2}+1$=$\sqrt{{{({a_k}-1)}^2}+1}+1$=$\sqrt{{{(\sqrt{k-1})}^2}+1}+1$=$\sqrt{k}+1$=$\sqrt{(k+1)-1}+1$,
所以当n=k+1时,${a_{k+1}}=\sqrt{(k+1)-1}+1$也成立;
综合①②${a_n}=\sqrt{n-1}+1$对n∈N*成立.
点评 本题考查数列的递推公式,用数学归纳法证明等式成立.证明当n=k+1时命题也成立,是解题的难点.
科目:高中数学 来源: 题型:选择题
| A. | (-2,2) | B. | (-1,2) | C. | (0,2) | D. | (1,2) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 5 | B. | 6 | C. | 10 | D. | 12 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 12种 | B. | 18种 | C. | 20种 | D. | 22种 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | sin2α | B. | cos2α | C. | tan2α | D. | cot2α |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com