精英家教网 > 高中数学 > 题目详情
14.已知集合M={x|lnx>0},N={x|x2-3x-4>0},则M∩N=(  )
A.(-1,4)B.(1,+∞)C.(1,4)D.(4,+∞)

分析 求出M与N中不等式的解集分别确定出两集合,求出M与N的交集即可.

解答 解:由M中不等式变形得:lnx>0=ln1,
解得:x>1,即M=(1,+∞),
由N中不等式变形得:(x-4)(x+1)>0,
解得:x<-1或x>4,即N=(-∞,-1)∪(4,+∞),
则M∩N=(4,+∞),
故选:D.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.袋中装有大小相同的四个球,四个球上分别标有数字“2”,“3”,“4”,“6”,现从中随机选取三个球,则所选的三个球上的数字能构成等差数列的概率是(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在△ABC中,内角A,B,C的对边分别为a,b,c,若a=1,b=2,C=60°,则c=$\sqrt{3}$,△ABC的面积S=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.1934年,来自东印度(今孟加拉国)的学者森德拉姆发现了“正方形筛子”,其数字排列规律与等差数列有关,如图,则“正方形筛子”中,位于第8行第7列的数是127.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=x3+ax2+bx+c在$x=-\frac{2}{3}$与x=1处都取得极值.
(1)求a,b的值;
(2)若对x∈R,f(x)有三个零点,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.F1、F2是双曲线C的焦点,过F1且与双曲线实轴垂直的直线与双曲线相交于A、B,且△F2AB为正三角形,则双曲线的离心率e=(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.$\overrightarrow{a}$、$\overrightarrow{b}$为单位向量,若$|\overrightarrow{a}-4\overrightarrow{b}|=3\sqrt{2}$,则$|\overrightarrow{a}+4\overrightarrow{b}|$=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若集合A={2,4,6,8},B={x|x2-9x+18≤0},则A∩B=(  )
A.{2,4}B.{4,6}C.{6,8}D.{2,8}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设p:2x<1,q:x(x+1)<0,则p是q成立的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案