分析 由函数的单调性求得函数y=x+4在(-∞,a)上的值域,然后分a≤1和a>1求得y=x2-2x(x≥a)的值域,结合函数f(x)的值域为R列关于a的不等式求解.
解答 解:函数y=x+4在(-∞,a)上为增函数,值域为(-∞,a+4).
若a≤1,y=x2-2x(x≥a)的值域为[-1,+∞),要使函数f(x)的值域为R,则a+4≥-1,得a≥-5,
∴-5≤a≤1;
若a>1,y=x2-2x(x≥a)的值域为[a2-2a,+∞),要使函数f(x)的值域为R,则a+4≥a2-2a,解得-1≤a≤4,
∴1<a≤4.
综上,使函数f(x)的值域为R的实数a的取值范围是[-5,4].
故答案为:[-5,4].
点评 本题考查分段函数的值域,考查分类讨论的数学思想方法,是中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com