精英家教网 > 高中数学 > 题目详情
(理科) 为了近似求出圆周率的值,有人设计如下方法来进行随机模拟:如图,双曲线
x2
a2
-
y2
b2
=1(a,b>0)的两顶点为A1、A2,虚轴两端点为B1、B2,两焦点为F1、F2.若以A1A2为直径的圆内切于菱形F1B1F2B2,切点分别为A、B、C、D.现在随机撒一把豆子(设其总数为N1)于菱形F1B1F2B2内,设落入圆O内的豆子数为N2,则圆周率π≈
 
(试用N1,N2表示).
考点:几何概型
专题:概率与统计
分析:先求出菱形的边长,从而得到圆的半径,写出菱形和圆的面积,根据芝麻落在圆内的概率等于圆的面积除以菱形的面积,列出一个关于π的关系式,做出π的估计值.
解答: 解:有题意可得,菱形的面积是2cb=2
a2+b2

圆的半径是a,则圆的面积是πa2
根据几何概型的概率公式当得到:
πa2
2b
a2+b2
=
N2
N1

所以π=
2N2b
a2+b2
N1a2

故答案为:
2N2b
a2+b2
N1a2
点评:本题考查模拟方法估计概率,考查几何概型,考查利用实际操作验证数学中常用的π的值,是一个比较好的题目,希望引起同学们重视.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x2+ax+3若f(x)在区间[1,4]上为单调函数,则a的范围是
 

变式为:已知函数f(x)=x2+ax+3
(1)若y=f(x)在区间[1,4]有最大值10,则a的值为
 

(2)若f(x)=0在区间[1,4]内有两个不相等的实根,则a的范围为
 
.;
(3)若f(x)=0在区间[1,4]内有解.则a的范围为
 

(4)若y=f(x)在区间[1,4]内存在x0,使f(x0)>0,则a的范围为
 

(5)若y=f(x)在区间[1,4]上恒为正数,则a的范围为
 

(6)设A={x|f(x)≤0},B=[1,4],若A≠B且A∩B=A,则a的范围为
 

(7)设A={x|f(x)≤0},B=[1,4],若B⊆A,则a的范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

等差数列{an}的前n项和为Sn,已知a1=10,a2为整数,且在前n项和中S4最大.
(Ⅰ)求{an}的通项公式;
(Ⅱ)设bn=
13-an
3n+1
,n∈N*
(1)求证:bn+1<bn
1
3
; 
(2)求数列{b2n}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线ax-by-3=0与f(x)=xex在点P(1,e)处的切线相互垂直,则
a
b
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如果椭圆的两个顶点为(3,0),(0,4),则其标准方程为(  )
A、
x2
4
+
y2
3
=1
B、
y2
16
+
x2
9
=1
C、
x2
3
+
y2
4
=1
D、
x2
16
+
y2
9
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知球O是棱长为1的正方体ABCD-A1B1C1D1的内切球,则以B1为顶点,以球被平面ACD1截得的圆为底面的圆锥的全面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知PA⊥平面ABC,QC⊥平面ABC,PA=QC,求证:PQ∥平面ABC

查看答案和解析>>

科目:高中数学 来源: 题型:

某小区想利用一矩形空地ABCD建造市民健身广场,设计时决定保留空地边上的一个水塘(如图中阴影部分),水塘可近似看作一个等腰直角三角形,其中AD=60m,AB=40m,且△EFG中,∠EGF=90°,经测量得到AE=10m,EF=20m.为保证安全同时考虑美观,健身广场周围准备加设一个保护栏.设计时经过点G作一条直线交AB,DF于M,N,从而得到五边形MBCDN的市民健身广场.
(Ⅰ)假设DN=x(m),试将五边形MBCDN的面积y表示为x的函数,并注明函数的定义域;
(Ⅱ)问:应如何设计,可使市民健身广场的面积最大?并求出健身广场的最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

云南省镇雄县高坡村发生山体滑坡,牵动了全国人民的心,为了安置广大灾民,救灾指挥部决定建造一批简易房,每间简易房是地面面积为100m2,墙高为3m的长方体样式,已知简易房屋顶每1m2的造价为500元,墙壁每1m2的造价为400元.问怎样设计一间简易房地面的长与宽,能使一间简易房的总造价最低?最低造价是多少?

查看答案和解析>>

同步练习册答案