1£®ÒÑÖªµãR£¨x0£¬y0£©ÔÚ¦££ºy2=4xÉÏ£¬ÒÔRΪÇеãµÄ¦£µÄÇÐÏßµÄбÂÊΪ$\frac{2}{{y}_{0}}$£®¹ý¦£ÍâÒ»µãA£¨-2£¬-1£©×÷¦£µÄÁ½ÌõÇÐÏßAB¡¢AC£¬ÇеãΪB¡¢C£¬×÷ƽÐÐÓÚBCµÄ¦£µÄÇÐÏߣ¨DΪÇе㣩·Ö±ð½»AB¡¢ACÓÚµãM¡¢N£¨Èçͼ£©£®
£¨1£©ÇóµãB¡¢CµÄ×ø±ê£»
£¨2£©ÈôÖ±ÏßADÓëBCµÄ½»µãΪE£¬Ö¤Ã÷DÊÇAEµÄÖе㣻
£¨3£©¶ÔÓÚµãAÔÚ¦£Í⣬¿ÉÒÔÖ¤Ã÷£¨2£©µÄ½áÂÛºã³ÉÁ¢£®Èô½«Óɹý¦£ÍâÒ»µãµÄÁ½ÌõÇÐÏß¼°µÚÈýÌõÇÐÏߣ¨Æ½ÐÐÓÚÁ½ÇеãµÄÁ¬Ïߣ©ËùΧ³ÉµÄÈý½ÇÐνС°ÇÐÏßÈý½ÇÐΡ±Èç¡÷AMN£¬½«M¡¢N×÷Ϊ¦£ÍâÒ»µã£¬ÔÙ×÷¡°ÇÐÏßÈý½ÇÐΡ±£¬²¢¼ÌÐøÒÀÕâÑùµÄ·½·¨×÷ÏÂÈ¥¡­£¬ÀûÓá°ÇÐÏßÈý½ÇÐΡ±µÄÃæ»ýºÍ¼ÆËãÓÉÅ×ÎïÏß¼°BCËùΧ³ÉµÄÒõÓ°²¿·ÖÃæ»ýT£®

·ÖÎö £¨1£©ÉèB£¨$\frac{{{y}_{1}}^{2}}{4}$£¬y1£©£¬C£¨$\frac{{{y}_{2}}^{2}}{4}$£¬y2£©£¬ÓÉÌâÒâ¿ÉµÃÇÐÏßµÄбÂÊ£¬ÔÙÓÉÁ½µãµÄбÂʹ«Ê½£¬¼ÆËã¼´¿ÉµÃµ½ËùÇóB£¬CµÄ×ø±ê£»
£¨2£©Çó³öBCµÄбÂÊ£¬ÉèD£¨$\frac{{m}^{2}}{4}$£¬m£©£¬ÇóµÃÇÐÏßµÄбÂÊ£¬¿ÉµÃDµÄ×ø±ê£¬ÇóµÃÖ±ÏßBCµÄ·½³Ì£¬ÔËÓÃÖеã×ø±ê¹«Ê½¿ÉµÃA¹ØÓÚDµÄ¶Ô³ÆµãÔÚÖ±ÏßBCÉÏ£¬¼´¿ÉµÃÖ¤£»
£¨3£©ÓÉÌâÒâ¿ÉµÃ£¬MNΪÈý½ÇÐÎABCµÄÖÐλÏߣ¬ÇÒEΪBCµÄÖе㣬DΪMNµÄÖе㣬ÇóµÃÈý½ÇÐÎABCµÄÃæ»ý£¬ÔÙÓÉÈý½ÇÐεÄÃæ»ýÖ®±ÈÓë¶ÔÓ¦±ßµÄ±ÈµÄ¹ØÏµ£¬¿ÉµÃÓÉÅ×ÎïÏßÍâ×÷³öµÄ¡°ÇÐÏßÈý½ÇÐΡ±µÄÃæ»ý¹¹³ÉÒÔ$\frac{1}{4}$SΪÊ×Ï$\frac{1}{4}$Ϊ¹«±ÈµÄµÈ±ÈÊýÁУ¬ÔËÓÃÎÞÇîµÝËõµÈ±ÈÊýÁеÄÇóºÍ¹«Ê½£¬¿ÉµÃËùÓÐÃæ»ýºÍ£¬¼´¿ÉµÃµ½ËùÇóÃæ»ýT£®

½â´ð ½â£º£¨1£©ÉèB£¨$\frac{{{y}_{1}}^{2}}{4}$£¬y1£©£¬C£¨$\frac{{{y}_{2}}^{2}}{4}$£¬y2£©£¬
ÓÉÌâÒâ¿ÉµÃÒÔBΪÇеãµÄ¦£µÄÇÐÏßµÄбÂÊΪ$\frac{2}{{y}_{1}}$£¬
ÓÉÁ½µãµÄбÂʹ«Ê½¿ÉµÃkAB=$\frac{{y}_{1}+1}{\frac{{{y}_{1}}^{2}}{4}+2}$=$\frac{2}{{y}_{1}}$£¬
»¯Îªy12+2y1-8=0£¬½âµÃy1=2£¨-4ÉáÈ¥£©£¬
ͬÀí¿ÉµÃy2=-4£¬
¿ÉµÃB£¨1£¬2£©£¬C£¨4£¬-4£©£»
£¨2£©Ö¤Ã÷£ºÓÉ£¨1£©¿ÉµÃkBC=$\frac{2+4}{1-4}$=-2£¬
ÉèD£¨$\frac{{m}^{2}}{4}$£¬m£©£¬¿ÉµÃ$\frac{2}{m}$=-2£¬½âµÃm=-1£¬
ÔòD£¨$\frac{1}{4}$£¬-1£©£¬
Ö±ÏßBCµÄ·½³ÌΪy-2=-2£¨x-1£©£¬
¿ÉµÃ2x+y-4=0£¬
ÓÉA£¨-2£¬-1£©¹ØÓÚDµÄ¶Ô³ÆµãΪ£¨$\frac{1}{2}$+2£¬-2+1£©£¬¼´Îª£¨$\frac{5}{2}$£¬-1£©£¬
Âú×ãÖ±ÏßBCµÄ·½³Ì£¬ÔòDÊÇAEµÄÖе㣻
£¨3£©ÓÉÌâÒâ¿ÉµÃ£¬MNΪÈý½ÇÐÎABCµÄÖÐλÏߣ¬ÇÒEΪBCµÄÖе㣬
DΪMNµÄÖе㣬
ÓÉ|BC|=$\sqrt{£¨1-4£©^{2}+£¨2+4£©^{2}}$=3$\sqrt{5}$£¬
Aµ½Ö±ÏßBCµÄ¾àÀëΪd=$\frac{|-4-1-4|}{\sqrt{4+1}}$=$\frac{9}{\sqrt{5}}$£¬
¿ÉµÃ¡÷ABCµÄÃæ»ýΪS=$\frac{1}{2}$d•|BC|=$\frac{27}{2}$£®
ÓÉMNΪ¡÷ABCµÄÖÐλÏߣ¬¿ÉµÃS¡÷AMN=$\frac{1}{4}$S£¬
¹ýMµÄÇÐÏßΪMB£¬MD£¬ÓëBDƽÐеÄÇÐÏßÉèΪFG£¬
¿ÉµÃS¡÷MFG=$\frac{1}{4}$S¡÷MBD=$\frac{1}{4}$S¡÷MAD=$\frac{1}{8}$S¡÷MAN=$\frac{1}{32}$S£¬
Éè¹ýNµÄÇÐÏßΪNC£¬ND£¬ÓëCDƽÐеÄÇÐÏßÉèΪKL£¬
ͬÀí¿ÉµÃS¡÷NKL=$\frac{1}{32}$S£¬
¼´ÓÐ×÷³öµÄÁ½¸ö¡°ÇÐÏßÈý½ÇÐΡ±µÄÃæ»ýºÍΪ$\frac{1}{16}$S£¬
ͬÀí¿ÉµÃ£¬¹ýF£¬G£¬K£¬L×÷³öµÄËĸö¡°ÇÐÏßÈý½ÇÐΡ±µÄÃæ»ýÏàµÈ£¬
¾ùΪ$\frac{1}{256}$S£¬ÆäºÍΪ$\frac{1}{64}$S£¬
¼´ËùÓС°ÇÐÏßÈý½ÇÐΡ±µÄÃæ»ýºÍΪ£º$\frac{1}{4}$S+$\frac{1}{16}$S+$\frac{1}{64}$S+¡­+$\frac{1}{{4}^{n}}$S+¡­
=$\frac{\frac{1}{4}S}{1-\frac{1}{4}}$=$\frac{1}{3}$S=$\frac{1}{3}$¡Á$\frac{27}{2}$=$\frac{9}{2}$£»
ÔòÅ×ÎïÏß¼°BCËùΧ³ÉµÄÒõÓ°²¿·ÖÃæ»ýΪS-$\frac{1}{3}$S=$\frac{2}{3}$S=$\frac{2}{3}$¡Á$\frac{27}{2}$=9£®

µãÆÀ ±¾Ì⿼²éÖ±ÏߺÍÅ×ÎïÏßµÄλÖùØÏµ£¬Ö÷ÒªÊÇÏàÇеÄÌõ¼þ£¬¿¼²éÖ±ÏßµÄбÂʺͷ½³ÌµÄÔËÓã¬Í¬Ê±¿¼²éÈý½ÇÐεÄÃæ»ýµÄÇ󷨣¬×¢ÒâÔËÓÃÈý½ÇÐÎÃæ»ýÖ®±ÈÓë¶ÔÓ¦±ßµÄ±ÈµÄ¹ØÏµ£¬¿¼²éÔËËãÄÜÁ¦£¬¾ßÓÐÒ»¶¨µÄÄѶȣ®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®ÒÑÖªº¯Êýf£¨x£©=loga£¨$\sqrt{{x}^{2}+1}$+x£©+$\frac{1}{{a}^{x}-1}$+1£¨a£¾0£¬a¡Ù1£©£¬Èôf£¨sin£¨$\frac{¦Ð}{6}$-¦Á£©£©=$\frac{1}{3}$£¬Ôòf£¨cos£¨¦Á-$\frac{2¦Ð}{3}$£©£©=$\frac{2}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®Ëæ»ú±äÁ¿¦Î·þ´ÓÕý̬·Ö²¼N£¨10£¬4£©£¬Èô¦Ç=¦Î+4£¬ÔòD¦ÇµÄֵΪ£¨¡¡¡¡£©
A£®2B£®4C£®8D£®16

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®µãPÊÇÔ²£¨x+1£©2+£¨y-2£©2=2ÉÏÈÎÒ»µã£¬ÔòµãPµ½Ö±Ïßx-y-1=0¾àÀëµÄ×î´óֵΪ£¨¡¡¡¡£©
A£®$\sqrt{2}$B£®$2\sqrt{2}$C£®$3\sqrt{2}$D£®$2+2\sqrt{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖªº¯Êýf£¨x£©=1n£¨x+1£©+ax2-x£¨a¡ÊR£©£®
£¨1£©µ±$a=\frac{1}{4}$ʱ£¬Çóº¯Êýy=f£¨x£©µÄµ¥µ÷Çø¼äºÍ¼«Öµ£»
£¨2£©Èô¶ÔÈÎÒâʵÊýb¡Ê£¨1£¬2£©£¬µ±x¡Ê£¨-1£¬b]ʱ£¬º¯Êýf£¨x£©µÄ×î´óֵΪf£¨b£©£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®Èçͼ£¬ÔÚÖ±ÈýÀâÖùABC-A1BCµÄµ×Ãæ¡÷ABCÖУ¬CA=CB=2£¬¡ÏBCA=90¡ã£¬ÀâAA1=4£¬M£®N·Ö±ðÊÇA1B1£¬A1AµÄÖе㣮
£¨1£©ÇóÖ¤£ºA1B¡ÍC1M£»
£¨2£©ÉèÖ±ÏßBNÓëÆ½ÃæABC1Ëù³ÉµÄ½ÇΪ¦È£¬Çósin¦È£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®Èçͼ£¬ÔÚËÄÀâ×¶P-ABCDÖУ¬²àÀâPA¡Íµ×ÃæABCD£¬AD¡ÎBC£¬¡ÏABC=90¡ã£¬PA=AB=BC=2£¬AD=1£¬MÊÇÀâPBµÄÖе㣮
£¨¢ñ£©ÇóÖ¤£ºAM¡ÎÆ½ÃæPCD£®
£¨¢ò£©ÉèµãNÊÇÏß¶ÎCDÉÏÒ»¶¯µã£¬µ±Ö±ÏßMNÓÚÆ½ÃæPABËù³ÉµÄ½Ç×î´óʱ£¬ÇóDNµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÒÑÖªº¯Êýf£¨x£©=ax2-x+xlnx£¬ÆäÖÐa¡ÊR£®
£¨¢ñ£©ÈôÇúÏßy=f£¨x£©Ôڵ㣨1£¬f£¨1£©£©´¦µÄÇÐÏß´¹Ö±ÓÚÖ±Ïßx-2y-3=0£¬ÇóaµÄÖµ£»
£¨¢ò£©Èôf£¨x£©¡Ü0ºã³ÉÁ¢£¬ÇóaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®É輯ºÏA={1£¬x2}£¬B={x}£¬ÇÒB⊆A£¬ÔòʵÊýxΪ£¨¡¡¡¡£©
A£®0B£®1C£®0»òlD£®0»ò-l

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸