精英家教网 > 高中数学 > 题目详情
已知函数cos2x+asinx-a2+2a+5有最大值7,求a的值.
考点:三角函数的最值
专题:计算题,三角函数的求值
分析:通过平方关系结合换元法,配方法得f(t)=-t2+at-a2+2a+6,对a分a<-2,-2≤a≤2,a>2讨论,结合二次函数的最值,即可求出a的值.
解答: 解:y=1-sin2x+asinx-a2+2a+5,令sinx=t,
则y=f(t)=-t2+at-a2+2a+6,t∈[-1,1],对称轴为t=
a
2

a
2
<-1时,即a<-2,ymax=f(-1)=-a2+a+5=7,△<0,方程无解;
当-1
a
2
≤1时,即-2≤a≤2,ymax=f(
a
2
)=-
3
4
a2+2a+6=7,此时a=2或
2
3

a
2
>1时,即a>2,ymax=f(1)=-a2+3a+5=7,此时a=1或2,均不成立.
所以a=2或
2
3
点评:本题是中档题,考查三角函数的最值的应用,考查分类讨论思想,配方法的应用,注意三角函数的有界性,是本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知一次函数f(x)满足f(f(f(x)))=2x-3,求函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x,y满足
x+2y≥0
x-y≤0
0≤y≤3
,则目标函数z=x+y的最小值为(  )
A、-5B、-4C、-3D、-2

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=x2-bx+c,f(0)=4,f(1+x)=f(1-x),则(  )
A、f(bx)≥f(cx
B、f(bx)≤f(cx
C、f(bx)>f(cx
D、f(bx)<f(cx

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x2+x-2-a(x+x-1)+a+2(x>0),则使f(x)的值域为[-1,+∞)的a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,∠A,∠B,∠C的对边分别为a,b,c,如果c=
2
a,∠B=45°,那么∠C等于(  )
A、120°B、105°
C、90°D、75°

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3x2+1,若f(x)的值域为(2,4),求f(x)的定义域的可能范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知点A(-1,-2),B(2,3),C(-2,-1).
(1)求以线段AB、AC为邻边的平行四边形的第四个顶点D的坐标;
(2)设
OP
=
AB
-t
OC
,求实数t的值,使
OP
OC

查看答案和解析>>

科目:高中数学 来源: 题型:

将分别写有a,b,c,d,e,1,2,3,4,5的10张纸片排成一列,要求5在最前面,1在最后面,且数字按从大到小排列,字母按英文字母表的先后顺序排列,则共有多少种不同的排列方法?

查看答案和解析>>

同步练习册答案