精英家教网 > 高中数学 > 题目详情
在平面直角坐标系xOy中,已知点A(-1,-2),B(2,3),C(-2,-1).
(1)求以线段AB、AC为邻边的平行四边形的第四个顶点D的坐标;
(2)设
OP
=
AB
-t
OC
,求实数t的值,使
OP
OC
考点:向量在几何中的应用
专题:计算题
分析:(1)根据向量的坐标运算法则求出
AB
+
AC
,结合
AD
=
AB
+
AC
,从而可求出点D的坐标;
(2)根据(
AB
-t
OC
)•
OC
=0
,建立等式,从而可求出t的值.
解答: 解:(1)由题设知
AB
=(3,5)
AC
=(-1,1)

AB
+
AC
=(2,6)

设点D(x,y),则
AD
=(x+1,y+2)=(2,6)

解得x=1,y=4,
故点D的坐标为(1,4)----------7′
(2)由题设知
OC
=(-2,-1)
AB
-t
OC
=(3+2t,5+t)

(
AB
-t
OC
)•
OC
=0

得(3+2t,5+t)•(-2,-1)=0,
从而5t=-11,所以t=-
11
5
.----------------14′
点评:本题主要考查了向量的坐标运算,以及数量积的运算,同时考查了学生分析问题和解决问题的能力,以及运算求解的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)是实数集R上的单调增函数,令F(x)=f(x)-f(2-x).
(1)求证:F(x)在R上是单调增函数;
(2)若F(x1)+F(x2)>0,求证:x1+x2>2.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数cos2x+asinx-a2+2a+5有最大值7,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b为正实数,若函数f(x)=ax3+bx+ab-1是奇函数,则f(2)的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:关于x的方程x2-mx-2=0在x∈[0,1]有解;命题q:f(x)=log2(x2-2mx+
1
2
)在x∈[1,+∞)单调递增;若?p为真命题,p∨q是真命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+2(a-2)x+5.
(1)若函数f(x)在(4,+∞)上单调递增,求实数a的取值范围;  
(2)若f(-1)=8,求函数f(x)在[0,3]上的最值,并写出f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)用单调性定义证明函数f(x)=x+
1
x
在区间(0,1)上是减函数;
(2)已知函数f(x)=ax2+
1
3
x+4.(a∈R)在区间[-2,+∞)上是增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知一元二次函数f(x)=x2+bx+c,且不等式x2+bx+c>0的解集为{x|x<-1或x>
1
2
},则f(10x)>0的解集为(  )
A、{x|x<-1或x>lg2}
B、{x|-1<x<lg2}
C、{x|x>-lg2}
D、{x|x<-lg2}

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A,B,C所对的边分别是a,b,c,已知b-c=
1
4
a,2sinB=3sinC,则cosA=(  )
A、-
1
4
B、
1
4
C、
7
8
D、
11
16

查看答案和解析>>

同步练习册答案