精英家教网 > 高中数学 > 题目详情
将分别写有a,b,c,d,e,1,2,3,4,5的10张纸片排成一列,要求5在最前面,1在最后面,且数字按从大到小排列,字母按英文字母表的先后顺序排列,则共有多少种不同的排列方法?
考点:排列、组合及简单计数问题
专题:应用题,排列组合
分析:其余8张纸片,共有
A
8
8
种排列方法,2,3,4的排列方法有
A
3
3
种,a,b,c,d,e的排列方法有
A
5
5
种,即可得出结论.
解答: 解:由题意,其余8张纸片,共有
A
8
8
种排列方法,2,3,4的排列方法有
A
3
3
种,a,b,c,d,e的排列方法有
A
5
5
种,
∴所求的排列方法有
A
8
8
÷(
A
3
3
A
5
5
)=56种.
点评:本题考查排列、组合及简单计数问题,考查学生的计算能力,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数cos2x+asinx-a2+2a+5有最大值7,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)用单调性定义证明函数f(x)=x+
1
x
在区间(0,1)上是减函数;
(2)已知函数f(x)=ax2+
1
3
x+4.(a∈R)在区间[-2,+∞)上是增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知一元二次函数f(x)=x2+bx+c,且不等式x2+bx+c>0的解集为{x|x<-1或x>
1
2
},则f(10x)>0的解集为(  )
A、{x|x<-1或x>lg2}
B、{x|-1<x<lg2}
C、{x|x>-lg2}
D、{x|x<-lg2}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1的离心率为
2
2
,且过点P(
2
2
1
2
),求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)顶点坐标为(1,2),且图象经过原点,函数g(x)=logax的图象经过点(
1
4
,-2).
(1)分别求出函数f(x)与g(x)的解析式;
(2)设函数F(x)=g(f(x)),求F(x)的定义域和值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,点E,F分别是锐角∠A两边上的点,AE=AF,分别以点E,F为圆心,以AE的长为半径画弧,两弧相交于点D,连接DE,DF.
(1)请你判断所画四边形的性状,并说明理由;
(2)连接EF,若AE=8厘米,∠A=60°,求线段EF的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A,B,C所对的边分别是a,b,c,已知b-c=
1
4
a,2sinB=3sinC,则cosA=(  )
A、-
1
4
B、
1
4
C、
7
8
D、
11
16

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
2-x,x≤0
4-x2
,0<x≤2
,则
2
-2
f(x)dx的值为(  )
A、π+6B、π-2C、2πD、8

查看答案和解析>>

同步练习册答案