精英家教网 > 高中数学 > 题目详情
13.已知$\frac{sinα-cosα}{sinα+cosα}$=2,则tanα=-3.

分析 已知等式左边分子分母除以cosα,利用同角三角函数间基本关系化简,将tanα的值代入计算即可求出值.

解答 解:∵$\frac{sinα-cosα}{sinα+cosα}$=$\frac{tanα-1}{tanα+1}$=2,即tanα-1=2tanα+2,
∴tanα=-3,
故答案为:-3

点评 此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知M={x|(x-a)2<1},N={x|x2-5x-24<0},若M是N的充分条件,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0),R1,R2是它实轴的两个端点,Q是其虚轴的一个端点,已知渐近线的方向向量是(1,$\sqrt{3}$)与(1,-$\sqrt{3}$),△QR1R2的面积是$\sqrt{3}$,O是坐标原点,直线y=kx+m与双曲线C交于A,B两点,且$\overrightarrow{OA}$⊥$\overrightarrow{OB}$.
(1)求双曲线C的方程;
(2)求点P(k,m)的轨迹方程;
(3)求证:原点O到直线AB的距离是定值,并求弦|AB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.求f(x)=sinxcosx+sinx-cosx的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数y=$\frac{1}{{2}^{x}-2}$的值域是(-∞,$-\frac{1}{2}$)∪(0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院  抄录了1至6月份每月10日的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:
日期昼夜温差x(℃)就诊人数y(人)
1月10日1022
2月10日1125
3月10日1329
4月10日1226
5月10日816
6月10日612
该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.
(1)求选取的2组数据恰好是相邻两个月的概率;
(2)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出y关于x的线性回归方程$\widehat{y}$=bx+a;
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?
(参考公式:b=$\frac{\sum_{i=1}^{n}{x}_{i}-\overline{x}{y}_{i}-\overline{y}}{\sum_{i=1}^{n}{x}_{i}-\overline{{x}^{2}}}$,a=$\overline{y}$-b$\overline{x}$.)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求极限:$\underset{lim}{x→0}$$\frac{cosx-{e}^{-\frac{{x}^{2}}{2}}}{{x}^{2}[x+ln(1-x)]}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设集合S={1,2,3,4,5,6,7,8,9},集合A={a1,a2,a3},A⊆S,a1,a2,a3满足a1<a2<a3且a3-a2≤6,那么满足条件的集合A的个数为83.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.若ab+a-b=2$\sqrt{2}$,求ab-a-b的值.

查看答案和解析>>

同步练习册答案